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Abstract 
 

This paper estimates the response of investment to changes in uncertainty using 

data on oil drilling in Texas and the expected volatility of the future price of oil. 

Using a dynamic model of firms’ investment problem, I find that: (1) the response 

of drilling activity to changes in price volatility has a magnitude consistent with 

the optimal response prescribed by theory, (2) the cost of failing to respond to 

volatility shocks is economically significant, and (3) implied volatility data 

derived from futures options prices yields a better fit to firms’ investment 

behavior than backward-looking volatility measures such as GARCH. 
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The real options literature, beginning with Marschak (1949) and Arrow 

(1968) and developed in Bernanke (1983), Pindyck (1991), and Dixit and Pindyck 

(1994), explains how firms should make decisions about investments that involve 

sunk costs. Real options theory views such investments as options in that, at any 

point in time, a firm may choose to either invest immediately or delay and 

observe the evolution of the investment’s payoff. A key insight is that the option 

to delay has value when future states of the world with positive returns to 

investing and states with negative returns are both possible, even holding the 

expected future return constant at its present level. Thus, in the presence of 

irreversibility and uncertainty, a naïve investment timing rule—proceed with an 

investment if its expected benefit even slightly exceeds its cost—is suboptimal 

because it does not account for the value of continuing to hold the option. Instead, 

firms should delay irreversible investments until a significant gap develops 

between the investments’ expected benefits and costs. Moreover, as uncertainty 

increases, real options theory tells us that the incentive to delay should grow 

stronger and the gap between the expected benefit and cost necessary to trigger 

investment should widen. 

While real options theory therefore prescribes how firms should carry out 

irreversible investments in uncertain environments, it is not empirically well-

known how firms actually proceed in such situations. In particular, the theory’s 

central prediction that firms should be more likely to delay investment if 

uncertainty increases, all else equal, has received only limited empirical scrutiny. 

The primary aim of this paper is therefore to assess the extent to which firms’ 

responses to changes in uncertainty align with the theory, using data on oil 

drilling activity in Texas coupled with market-based expectations of the volatility 

of the future price of oil. 

I first show, in a descriptive analysis, that increases in the expected 

volatility of the future price of oil are associated with decreases in drilling 
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activity, conditional on the expected future oil price level. The core of this paper 

is then aimed at assessing whether the magnitude of the empirical relationship 

between drilling and uncertainty is aligned with the prediction from a real options 

model of investment. I construct and estimate a dynamic, econometric model of 

firms’ optimal drilling timing that is based on Rust’s (1987) nested fixed point 

approach but allows the volatility of the process governing future oil prices to 

vary over time. The use of this model allows me to do more than carry out a 

simple “yes/no” test of whether or not firms respond to changes in uncertainty: I 

can also ask whether the magnitude of firms’ responses in the data agrees with the 

magnitude prescribed by the model. To the best of my knowledge, this paper is 

the first in the real options literature to empirically address this question. 

I find that the response of drilling investment to changes in uncertainty is 

broadly consistent with optimal decision-making. That is, when the expected 

volatility of the future price of oil increases, drilling activity decreases by a 

magnitude that aligns with that predicted by the real options model. The close 

adherence of firms’ drilling decisions to the theory is underscored by a related 

finding that firms have a substantial economic incentive to time their investments 

optimally: ignoring within-sample variation in oil price volatility can reduce the 

value of a drilling prospect by more than 25 percent. 

These results provide a micro-empirical foundation for a large number of 

applications of real options theory that implicitly assume that firms optimally 

make decisions in the presence of time-varying uncertainty. In industrial 

organization, for instance, Pakes (1986), Dixit (1989), Grenadier (2002), 

Aguerrevere (2003), and Collard-Wexler (2013) model the implications of 

uncertainty and sunk costs for investment, entry, and research and development in 

several settings and under various forms of competition. The general dynamic 

oligopoly model of Ericson and Pakes (1995) is built on a framework in which 

firms treat many decisions as options. In macroeconomics, Bernanke (1983), 
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Hassler (1996), Bloom (2009), Bloom, Bond, and Van Reenen (2007), and Bloom 

et al. (2012) construct models that emphasize the importance of changes in 

economy-wide uncertainty in determining the level of aggregate investment. In 

international trade, Handley (2012) and Handley and Limão (2012) model the 

effect of trade policy uncertainty on exporters’ investment and entry decisions. 

Finally, in the environmental and resource economics literature, Arrow and Fisher 

(1974), among others, discuss the role of uncertainty in dictating when “green” 

investments should be undertaken.  

I conduct my analysis using a detailed dataset of well-level drilling 

activity in Texas obtained from the Texas Railroad Commission. I combine the 

drilling data with information on the expected future oil price and price volatility 

from the New York Mercantile Exchange (NYMEX). I derive my measure of 

expected price volatility from the NYMEX futures options market, in which 

volatility is implicitly traded and priced. Under a hypothesis that the market is an 

efficient aggregator of information, the implied volatility from futures options 

will incorporate more information about the distribution of future prices than 

backward-looking volatility measures derived from price histories alone. 

Consistent with this hypothesis, I find that when I measure expected price 

volatility using historic volatility (either directly or via a GARCH model) rather 

than implied volatility, the model does a relatively poor job of fitting the data, and 

the estimated response of investment to changes in volatility is attenuated and 

imprecise. These results complement research in the finance literature that finds 

that, across many commodity and financial markets, implied volatility tends to be 

a better predictor of future volatility better than backward-looking measures 

(Poon and Granger 2003, Szakmary et al. 2003). 

There exist previous studies that have empirically examined whether 

investments respond to changes in uncertainty, though without linking the 

magnitudes of the estimated effects to theory. Several of these studies, like this 
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one, focus on natural resource industries. Hurn and Wright (1994), Moel and 

Tufano (2002), and Dunne and Mu (2010) examine the impact of resource price 

volatility on offshore oil field investments, gold mine openings and closings, and 

refinery investments, respectively. None of these papers uses implied volatility to 

measure expected price volatility—the uncertainty measure is the historic realized 

variance of commodity prices—and they collectively find mixed evidence on 

whether increases in volatility reduce investment. Other micro-empirical work 

includes Guiso and Parigi (1999), which finds evidence from a cross-sectional 

survey that Italian firms whose managers subjectively report high levels of 

expected demand uncertainty tend to have relatively low levels of investment. List 

and Haigh (2010) meanwhile provides experimental evidence that investment 

timing decisions of agents (drawn from student and professional trader subject 

pools) are generally responsive to changes in payoff uncertainty. 

Another set of papers in the macroeconomics literature measures the 

response of aggregate output and investment to changes in economy-wide 

uncertainty, as measured by the volatility of stock market returns or interest rates 

(Hassler 2001, Alexopoulos and Cohen 2009, Bloom 2009, and Fernandez-

Villaverde et al. 2011). A related work is Leahy and Whited (1996), which 

examines firm-level investment and stock return volatilities. These papers 

generally find that increases in volatility are associated with decreases in output or 

investment. However, factors that influence the expected level of investments’ 

payoffs are difficult to proxy for in this literature, so that a negative correlation 

between first and second moment shocks (a possibility suggested by Bachmann, 

Elstner, and Sims (2013)) may cause these estimates to be downward-biased 

(away from zero). Leahy and Whited (1996) also notes that fluctuations in stock 

returns likely reflect the volatility of factors beyond those impacting the future 

revenues associated with new, marginal investment opportunities. 
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This paper’s focus on the Texas onshore drilling industry as its object of 

study, combined with econometric modeling of the firms’ investment timing 

problem, confers valuable advantages relative to previous work. First, I possess 

data at the level of each individual investment—the drilling of each well—and 

need not rely on aggregate data or accounting data. Second, the NYMEX futures 

and futures options markets provide measures of the expected level and volatility 

of each investment’s expected return that, in principle, incorporate all available 

information at the time of the investment. Such measures are not available in most 

industry settings, and they also allow for a separation of first and second moment 

shocks. Finally, I take advantage of the fact that oil production is a highly 

competitive industry, with no one firm able to influence the price of oil, and I 

focus my analysis on oil fields in which common pool issues are not a concern. I 

am therefore able to treat each firm’s investment decision as a single-agent 

dynamic investment problem. This approach, which would be questionable in 

most other industries, allows me to measure the magnitude of firms’ response to 

uncertainty relative to the theoretical optimum, going beyond a simple test of 

whether or not firms respond to uncertainty shocks at all. 

In what follows, I first discuss relevant institutional details of the Texas 

onshore drilling industry and the datasets I use. Section II follows with a 

descriptive analysis of the data. The remainder of the paper focuses on the 

construction and estimation of a structural model of the drilling investment 

problem with time-varying uncertainty: section III presents the model, section IV 

discusses the estimation procedure, and section V follows with the estimation 

results. Section VI provides concluding remarks. 

 

I. Institutional Setting and Data 

A. Drilling description, types of wells used in this study, and drilling data 
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Oil and gas reserves are found in geologic formations known as fields that 

lie beneath the earth’s surface, and the mission of an oil production company is to 

extract these reserves for processing and sale. To recover the reserves, the firm 

needs to drill wells into the field. Drilling is an up-front investment in future 

production; if a drilled well is successful in finding reserves, it will then produce 

oil for a period of several years, requiring relatively small operating expenses for 

maintenance and pumping. The firm does not know in advance how much oil will 

be produced (if any) from a newly drilled well, though it will form an expectation 

of this quantity based on available information, such as seismic surveys and the 

production outcomes of previously drilled wells. The price that the firm will 

receive for the produced oil is also not known with certainty at the time of 

drilling. Conversations with industry participants have indicated that some, 

though not all, firms use the NYMEX market to hedge at least some of their price 

risk. This use of the NYMEX indicates that risk aversion over future oil prices is 

unlikely to influence drilling decisions, since any firm that is risk averse can 

hedge the price risk away. 

Drilling costs range from a few hundred thousand dollars for a relatively 

shallow well that is a few thousand feet deep to millions of dollars for a very deep 

well (as much as 20,000 feet deep). Once drilled, these costs are almost 

completely sunk: the labor and drilling rig rental costs expended during drilling 

cannot be recovered, nor can the expensive steel well casing and cement that run 

down the length of the hole. Drilling can therefore be modeled as a fully 

irreversible investment. 

Wells can be one of three types: exploratory, development, or infill. 

Exploratory wells are drilled into new prospective fields, and if successful they 

can not only be productive themselves but also lead to additional drilling activity. 

Development wells are those that follow the exploratory well: they increase the 

number of penetrations into a recently discovered field in order to drain its 
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reserves. Finally, infill wells are drilled late in a field’s life to enhance an oil 

field’s production by “filling in” areas of the reservoir that have not been fully 

exploited by the pre-existing well stock. 

In this paper, I exclude exploratory and development wells and analyze 

only the subset of data corresponding to infill wells. This exclusion facilitates this 

study in two important ways. First, examining only infill wells constrains the set 

of available drilling options to those that exist within a finite, known set of fields. 

Thus, I need not be concerned with the creation of new options through new field 

discoveries or leasing activity. Second, the majority of production from a typical 

infill well takes place within the first year or two of the well’s life: because infill 

wells tap only small isolated pools of oil that have been left behind by older wells 

in a field, their productive life is quite short. Thus, I may rely on liquid near-term 

futures to provide expected prices and volatilities that are relevant for these wells 

rather than less liquid long-term futures. 

I also distinguish wells drilled in fields operated by a single firm from 

wells drilled in fields operated by multiple firms. The process by which 

production companies acquire leases—rights to drill on particular plots of land—

often leads to situations in which several firms have the right to drill in and 

produce from a single field (see Wiggins and Libecap 1985). This division of 

operating rights leads to a common pool problem to the extent that each firm’s 

actions lead to informational and extraction externalities for its neighbors, 

suggesting that in such situations a dynamic game is needed to model firms’ 

drilling problem. This paper avoids this substantial complication by focusing 

exclusively on wells drilled in sole-operated fields, for which a single-agent 

model is sufficient to model drilling behavior.
1
 

                                                 
1
 Industry participants have suggested that the degree of strategic interaction amongst firms 

drilling infill wells in common pool fields may be limited in practice because infill drilling targets 

tend to be small pools that are geologically isolated from other parts of the field. In addition, the 
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I obtained drilling data from the Texas Railroad Commission (TRRC) 

“Drilling Permit Master and Trailer” database, yielding information regarding 

every well drilled in Texas from 1977 through 2003.
2
 These data identify when 

each well was drilled, which field it was drilled in, whether it was drilled for oil or 

for gas, and the identity of the production company that drilled it. During the 

1993-2003 period for which I also observe data on drilling costs and expected oil 

prices, I observe a total of 23,279 oil wells.
3
 Of these, 17,456 are infill wells and 

1,150 are infill wells drilled in sole-operated fields.
4
  

The time series of Texas-wide drilling activity is depicted in figure 1 as 

the number of wells drilled per month. These data appear to be noisy because they 

are integer count data ranging from 2 to 19 wells per month. The time series of 

drilling activity in a larger sample that includes wells drilled in common pool 

fields, provided in the appendix as figure A1, does not exhibit this noisiness, 

                                                                                                                                     
TRRC regulates the minimum distance from a neighbor’s lease at which a well may be drilled. 

Correspondingly, the time series of infill drilling in all fields, including common pools, is very 

similar to that for sole-operated fields (see appendix figure A1). I nevertheless focus my analysis 

on sole-operated fields to be conservative, though estimating the model using the full sample of 

infill wells yields very similar results to those presented in section V below. 
2
 While drilling data exist beyond 2003, industry participants have indicated that the dramatic 

increase in oil and natural gas prices that began in 2004 increased drilling activity to the extent 

that the rig market became extremely tight. Long wait lists developed when large production 

companies locked up rigs on long-term contracts so that the spot rental market could not allocate 

rigs based on price. Because these unobservable wait lists disconnect drilling decisions from 

observed drilling, I only use data through 2003. 
3
 I define an oil well as a well that is marked as a well for oil (rather than for “gas” or “both”) on 

its TRRC drilling permit and is drilled into a field for which average oil production exceeds 

average natural gas production on an energy equivalence basis (1 barrel of oil is equivalent to 5.8 

thousand cubic feet of gas). 
4
 I define infill wells as those that are drilled into fields discovered prior to 1 January, 1990. I 

define a sole-operated field as one for which, in every year from 1993-2003, only a single firm is 

listed as a leaseholder in the field’s annual production data. This definition allows a field to be 

traded from one firm to another but disallows fields in which several firms operate simultaneously 

on different leases. 
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confirming that it is due to the integer count nature of the data rather than a 

systematic feature of the industry.
5
 

The drilled wells are spread over 663 sole-operated fields and 453 firms. 

The mean number of wells per field is 1.73, and I observe only one well drilled in 

the majority of fields in the data. The maximum number of wells I observe in any 

field is 31. In addition to the 663 fields in which I observe drilling, I also observe 

6,637 sole-operated oilfields in which no infill wells are drilled. The median 

number of wells per firm is 1, the mean is 2.54, and the maximum is 31. Thus, the 

majority of wells in the dataset can be characterized as having been drilled by 

small firms in relatively small, old fields with few remaining drilling 

opportunities. 

[Figure 1 about here] 

 

B. Oil production 

I acquired oil production data from the TRRC’s “Final Oil and Gas 

Annuals” dataset to assess the production that resulted from the observed drilling 

activity. Unfortunately, drilling data can only be matched to production records 

for a fraction of drilled wells. There are two impediments to merging these data. 

First, drilling data may only be linked to production data using the name of the 

lease, which is not uniform across the drilling and production databases.
6
 Even 

after making a number of corrections to lease names (such as changing all 

instances of “and” to “&” and removing all periods), I am only able to match 527 

                                                 
5
 I have also estimated a model using quarterly data rather than monthly data. Though the 

quarterly aggregation does substantially reduce the noise in drilling activity, it also loses important 

variation in prices and volatility. The estimate of firms’ sensitivity to volatility in a quarterly 

model is therefore quite noisy: the point estimate of β from the dynamic model is 1.429 with a 

standard error of 1.281. 
6
 The lease names in the drilling and production datasets come from different forms that are filed 

by producers at potentially very different times. According to TRRC staff, the two datasets were 

never intended to be merged together. 
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of the 1,150 drilled wells to a lease in the production data. Second, the TRRC 

records monthly oil production at the lease-level, not the well-level, because 

individual wells are not flow-metered. I am therefore only able to identify 

production from wells that are drilled on leases on which there exist no other 

producing wells and there is no subsequent drilling: this is the case for 160 of the 

527 matched wells. For these 160 wells, I tabulate the total production of each for 

the three years subsequent to drilling: the median well produces 8,417 barrels 

(bbl), and the mean produces 15,395 bbl. Seven (4.4 percent) of the wells are dry 

holes that produce nothing; the maximum production is 164,544 bbl.  

Figure 2 displays the average monthly production profile of a drilled well 

in the sample. Production begins immediately subsequent to drilling, and 

depletion of the oil pool results in a fairly steep production decline so that a 

typical well’s monthly production falls to one-half of its initial level only seven 

months into the well’s life. In addition, Anderson, Kellogg, and Salant (2013) 

shows that firms do not alter production rates or delay production due to oil price 

changes: the shape of the production profile is consistent throughout the data, 

including the 1998-1999 period when the price of oil was very low. This profile is 

consistent with a production technology in which production rates are constrained 

by geologic characteristics of the oil reservoir such as its pressure, the remaining 

volume of oil near the well, and rock permeability. It is also consistent with low 

operating expenses, so that the probability that the oil price will fall below the 

point at which revenues equal operating costs is extremely low. Thus, the option 

value represented by the ability to adjust a well’s production rate in response to 

price changes is negligible, implying that drilling and production do not need to 

be modeled as a compound option. 

[Figure 2 about here] 

 

C. Expected oil prices 
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I measure expected oil prices using the prices of NYMEX crude oil futures 

contracts, obtained from Price-Data. With risk neutral traders and efficient 

aggregation of information by the market, the futures price is in theory the best 

predictor of the future price of oil. In practice, while futures prices have been 

found to provide slightly more precise predictions than the current spot price (i.e., 

a no-change forecast) during the 1993-2003 period I study here (Chernenko, 

Schwarz, and Wright 2004), the improvement is not statistically significant. 

Moreover, when data through 2007 are used, spot prices actually slightly 

outperform futures prices, though again the difference is not statistically 

significant (Alquist and Kilian 2010). Given the slightly superior performance of 

NYMEX futures during the sample period of this paper and the fact that a 

majority of producers claim to use futures prices in making their own price 

projections (SPEE 1995), I will use futures prices as the measure of firms’ 

expected price of oil. In a secondary specification, I explore how the use of spot 

prices impacts the results.  

I focus on the prices of futures contracts with 18 months to maturity.
7
 This 

maturity is the longest time horizon for which NYMEX futures are traded 

regularly (on 84 percent of all possible trading days over 1993-2003). In addition, 

the typical production profile of drilled infill wells suggests that 18 months might 

be a reasonable forecast horizon for a firm to use when evaluating a drilling 

prospect, since approximately one-half the well’s total expected production is 

likely to be exhausted at this time.
8
 

                                                 
7
 In reality, it is rare that a NYMEX futures contract has a time to maturity of exactly 18 months 

(548 days) since the available contracts that can be traded have maturities that are either one full 

month or one full quarter apart. On any given trading date, I therefore treat contracts with a time to 

maturity that is within 46 days of 18 months as having a maturity of 18 months. When more than 

one such contract is traded on any given trading date, I average the prices across the contracts. 
8
 This half-life is derived by fitting a hyperbolic curve to the average production data (figure 2) 

and extrapolating production beyond 3 years. Based on this curve and a 9.9 percent real discount 

rate (see section IV.A), half of a typical well’s expected discounted production is exhausted in 

19.1 months. 
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Futures prices are consistent with mean-reverting expectations about the 

future price of oil, as shown in figure 3. When the front-month (nearest delivery 

month) oil price exceeds approximately $20/bbl (real $2003), the price of an 18-

month futures contract tends to be lower than the front-month price, and the 

reverse holds when the front-month price is below $20/bbl.  

[Figure 3 about here] 

 

D. Expected oil price volatility 

I derive my primary measure of firms’ expected future price volatility 

from the volatility implied by NYMEX futures options prices.
9
 Across numerous 

commodity and financial contracts, implied volatility has been found to be a 

better predictor of future volatility than measures based on historic price 

volatility, including GARCH models (Poon and Granger 2003, Szakmary et al. 

2003). Intuitively, if markets are efficient then options prices incorporate up-to-

date information beyond that available from price histories alone, improving their 

predictive power.  

The classic formula for the value of a commodity option contract is based 

on the Black-Scholes model (1973) and given by Black (1976). Given the price of 

an option, its time to maturity and strike price, the price of the underlying futures 

contract, and the riskless rate of interest, Black’s formula can be inverted to yield 

the expected volatility implied by the option.
10

 An important assumption of Black 

(1976) is that, on any given trade date, the volatilities of prices across all times to 

maturity are equal.
11

 However, it is apparent in figure 3 that front-month futures 

                                                 
9
 I obtained data on daily crude futures options prices from Commodity Systems Inc. 

10
 I use the interest rate on treasury bills (obtained from HSH Associates) to measure the riskless 

rate of interest. 
11

 The Black (1976) formula also assumes that the options are European and that volatility is not 

stochastic. As discussed in appendix 1, however, these assumptions are likely to be of minor 

importance in this setting. 
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prices are, on average, more volatile than 18-month futures prices, violating this 

assumption. Hilliard and Reis (1998) shows that, in this case, applying Black 

(1976) to 18-month futures options yields the average volatility of futures price 

contracts with maturities between the front-month and 18 months. The empirical 

analysis below requires the volatility of 18-month futures prices rather than this 

average. In appendix 1, I discuss how I correct the Black (1976) implied 

volatilities to address this issue. The resulting time series of implied 18-month 

futures price volatilities is given in figure 1 alongside the time series of 18-month 

futures prices (both series are averages of daily observations within each month). 

In secondary empirical specifications, I construct volatility forecasts using 

historic futures price volatility rather than implied volatility derived from futures 

options. These specifications address the possibility that oil production firms’ 

volatility forecasts differ from those of the market. One possible forecast is a no-

change forecast; that is, the expected future volatility of the NYMEX futures price 

is its recent historic volatility. Figure 4 compares the historic volatility of the 

futures price, measured over a rolling window of one year, to the implied 

volatility series. Historic volatility sometimes deviates substantially from implied 

volatility: it is relatively high in 1997 and low in 1998, and it does not reflect the 

implied volatility spikes in 1999 and September 2001. 

I have also forecast volatility using a GARCH(1,1) model. For each date 

in the dataset, I estimate the GARCH parameters using a four-year rolling 

window of daily 18-month futures prices.
12

 At each date, I then use the estimated 

GARCH model to forecast volatility over the upcoming month. The average 

forecasted volatility over this month is then used as the measure of firms’ 

expected price volatility. Figure 4 plots the series of GARCH volatility forecasts. 

                                                 
12

 In the GARCH model, the mean price equation is a seventh-order autoregression; this number of 

lags is necessary to eliminate serial correlation in the price residuals. A GARCH(1,1) process is 

then sufficient to eliminate conditional heteroscedasticity in the residuals (the p-value for rejecting 

a null hypothesis of no conditional heteroscedasticity is 0.423). 
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These GARCH forecasts align more closely with the implied volatilities than do 

simple historic volatilities, though the GARCH and implied volatility time series 

still differ substantially at various points, most notably 1997-1998 and late 2001. 

[Figure 4 about here] 

 

E. Drilling costs 

The primary source for information on drilling costs is RigData, a firm 

that collects data on daily rental rates (“dayrates”) for drilling rigs from surveys of 

drilling companies and publishes these data in its Day Rate Report (2006).
13

 Rig 

rental comprises the single largest line-item in the overall cost of a well, and 

industry sources have suggested that at typical dayrates rig rental accounts for 

one-third of a well’s total cost.
14

 Because I observe dayrates but not other 

components of drilling costs, I assume that non-rig costs are constant in real terms 

and equal to twice the rig rental cost at the average sample dayrate. This constant 

cost assumption seems reasonable over the 1993-2003 sample. Prices for steel, 

which factor into prices for drill pipe, bits, and well casing, were fairly stable over 

this time, nominally increasing by an average of 1.8 percent per year according to 

data from the Bureau of Labor Statistics. Other substantial components of cost, 

such as site preparation, construction, and general equipment rental (pumps, for 

example), should be based primarily on prices for non-specialized labor and 

                                                 
13

 The oil production firms that hold leases, make drilling decisions, and are the focus of this study 

do not actually own the drilling rigs that physically drill their wells. Rigs are instead owned by 

independent drilling companies that contract out their drilling services. See Kellogg (2011) for 

further information regarding the contracting process between production firms and drilling 

companies.  
14

 This one-third figure was suggested by RigData and substantiated by information from the 

Petroleum Services Association of Canada’s (PSAC’s) Well Cost Study (summers of 2000 

through 2004). This study provides a break-out of the costs of drilling representative wells across 

Canada during the summer months. For the non-Arctic, non-offshore areas that most closely 

resemble conditions in Texas, rig rental costs averaged 35.2 percent of total costs. 
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capital inputs and therefore also be stable in real terms.
15

 As for the assumption 

that these non-rig costs constitute two-thirds of total drilling costs on average, I 

explore the use of alternative ratios as robustness tests when estimating the model. 

Because drilling rigs are pieces of capital that are specific to the oil and 

gas industry, rig rental rates are positively correlated with oil and gas prices and, 

accordingly, vary over the sample frame. For a well of average depth (5,825 feet 

in the sample), the dayrate ranges from $5,327 to $10,805, with an average of 

$6,710.
16

 Given an average drilling time of 19.2 days, the average rig rental cost 

for a well is therefore $128,834 and average non-rig costs, estimated to be twice 

this amount, are $257,667 (all figures in real 2003 US$).  

For each month in the sample, I calculate the total drilling cost of an 

average well as the sum of 19.2 days times the prevailing dayrate for that month 

(in real terms) with average non-rig costs. The time series of drilling costs for an 

average well is plotted alongside oil futures prices in figure 5. The positive 

correlation between these two series is readily apparent. 

[Figure 5 about here] 

 

II. Descriptive results 

                                                 
15

 Evidence in support of this claim is available from the 2002, 2003, and 2004 PSAC Well Cost 

Studies, during which time the specifications for the representative wells were essentially 

unchanged. These data indicate that non-rig drilling costs changed, on average, by only -0.2 

percent in 2003 and +3.1 percent in 2004. Rig-related drilling costs, however, increased by 9.8 

percent in 2003 and 30.9 percent in 2004, following increases in the price of oil. 
16

 RigData reports dayrates separately for rigs drilling wells between 0 and 5,999 feet deep and for 

rigs servicing wells between 6,000 and 9,999 feet deep. The dayrates used in this study are the 

average of these two depth classes for the Gulf Coast / South Texas region. The RigData dataset is 

quarterly and continuously reported from 1993 onward. Because I conduct my analysis at a 

monthly level, I generate monthly dayrate data by assigning each quarterly reported dayrate to the 

central month of each quarter and then linearly interpolating dayrates for the intervening months. 

The alternative approach of simply treating dayrates as constant within each quarter has only a 

minor effect on the estimated results. 
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Figure 1 plots the three time series of primary data: drilling activity, oil 

futures prices, and implied oil price volatility from futures options. Several 

features of the plot are worth noting. First, drilling activity rises and falls with the 

oil price. In particular, the oil price crash of 1998-1999 that was driven by the 

Asian financial crisis (Kilian 2009) is associated with a sharp reduction in drilling 

activity. Second, following the 1998-1999 price crash, oil prices rapidly recovered 

and by the beginning of 2000 actually surpassed their pre-1998 levels. However, 

oil drilling did not enjoy a similar recovery: activity did increase once prices 

began to rise in the summer of 1999 but recovered only to approximately two-

thirds of its pre-1998 level. Why did drilling activity not reach its earlier level 

despite such a high oil price? The third line on the graph—implied volatility—

suggests that an increase in uncertainty following the 1998 price crash may have 

caused producers to delay the exercise of their drilling options. Implied volatility 

increases sharply in 1998 and remains at an elevated level for the remainder of the 

sample; this high level of volatility is associated with the period in which 

expected oil prices were high yet drilling activity was low. Moreover, several 

positive shocks to volatility subsequent to 1999, such as the volatility spike 

following September 11
th

, 2001, appear to be associated with reductions in 

drilling activity. 

A descriptive statistical analysis using a hazard model confirms that the 

negative relationship between drilling and expected price volatility that is 

apparent in figure 1 is in fact statistically significant. The unit of observation in 

this analysis is an individual drilling prospect, and I model 7,787 such prospects: 

the 1,150 observed infill wells plus one prospect for each of the 6,637 sole-

operated fields in which I observe no drilling activity. In doing so, I treat 

prospects that exist within the same field as independent of one another. While 

this treatment does not allow for the modeling of factors that might cause wells 

within the same field to be drilled at nearly the same time, the fact that most fields 
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have zero or one well suggests that the impact of modeling all drilling decisions 

independently of one another may be minor.  

I choose a hazard model, rather than an OLS regression of drilling 

investment on expected price and volatility that would be more typical of both the 

macro and micro real options literatures, to capture the idea that drilling activity 

should decline over time as the set of available options is gradually reduced 

through drilling.
17

 In the simplest possible model, I model the hazard rate γ(t) as 

an exponential function of the expected future price level and expected price 

volatility per (1) below.  

(1)
  0 3 3( ) exp( )p t v tγ t β β Price β Vol       

In estimating both this model and the structural model described below, I 

lag all covariates by three months, as industry participants have indicated that the 

engineering, permitting and rig contracting processes generally drive a three 

month wedge between the decision to drill and the commencement of drilling. For 

inference, I use a “sandwich” variance-covariance matrix estimator that allows 

arbitrary within-field correlation of the likelihood scores (Wooldridge 2002).
18

 In 

practice, this estimator increases the estimated standard errors by about 25 

percent, on average, relative to the standard BHHH estimator. 

                                                 
17

 Nonetheless, results from an OLS regression are similar to those from the hazard model. When I 

regress the log of the number of wells drilled each month on the oil price, volatility, and drilling 

cost, I obtain estimated coefficients of 0.082, -0.035, and -0.398, respectively. These coefficients 

are all similar, statistically and economically, to those from the analogous hazard model regression 

in column II of table 2 (in which percent impacts are measured away from one rather than zero). 
18

 Wooldridge (2002) shows that that this approach, which is analogous to clustering in linear 

regression models, still produces consistent estimates of the parameters even though serial and 

cross-well correlation within each field is not explicitly accounted for in the likelihood function. I 

also use this approach when estimating the structural model, discussed in sections III through V. I 

have also estimated these models while clustering the standard errors on time rather than field to 

account for cross-sectional correlation of the likelihood scores that might arise from technological 

or macroeconomic shocks. These estimated standard errors are generally similar to those obtained 

from the standard BHHH estimator. 
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The results of estimating (1) are presented in column I of table 1. A $1.00 

increase in the expected future price of oil is associated with an increase in the 

likelihood of drilling of 4.1 percent, and a one percentage point increase in 

expected price volatility is associated with a decrease in the likelihood of drilling 

of 3.0 percent. Both of these point estimates are statistically significant at the 1 

percent level. Column II includes the cost of drilling as an additional covariate 

and finds that drilling costs are negatively associated with drilling, as expected 

(though the relationship is not statistically significant). Oil prices and volatility 

continue to be positively and negatively, respectively, associated with drilling in 

this specification. Columns III and IV show that these correlations are robust to 

allowing for unobserved prospect-specific heterogeneity and a time trend.  

[Table 1 about here] 

Because these descriptive results, in the absence of an economic model, 

cannot speak to the optimality of firm decision-making or welfare, the remainder 

of this paper focuses on formulating and estimating a model of the infill drilling 

problem faced by oil production companies in Texas. The primary goal of this 

model is to relate firms’ observed responses to changes in uncertainty to the 

theoretically optimal response.  

 

III. A model of drilling investment under time-varying uncertainty 

A. Model setup 

Consider a risk-neutral, price-taking oil production firm that is deciding 

whether to drill some prospective well i at date t. Using geologic and engineering 

estimates, the firm generates an expectation regarding the monthly oil production 

from the well should it be drilled. The present value of the well’s expected 

revenue is then equal to the sum, over the months of the well’s productive life, of 

the product of the well’s expected monthly production with the expected oil price 
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each month, net of taxes and royalties, and discounted at the firm’s discount 

factor δ. Rather than model this discounted sum explicitly, I model it instead as 

simply the product riPt. Here, ri represents the sum of the well’s expected monthly 

production, net of taxes and royalties, and discounted so that it is in present value 

terms.
19

 Pt represents the “average” oil price that will prevail over all barrels of oil 

expected to be produced by the well, so that the product riPt is equal to the 

original discounted sum of monthly revenue. In the estimation that follows, I will 

use the 18-month futures price of oil as Pt. This simplification allow me to model 

the price level using only the single state variable Pt rather than a vector of state 

variables for the expected price in each month of the well’s productive life. 

I emphasize that riPt is the firm’s expectation of the value that will be 

obtained from drilling. Realized value may differ substantially from riPt because 

the realized oil price may differ from Pt (though the firm could hedge this risk 

away) and because realized production may differ from ri. Recall that some of the 

wells observed in the sample yielded zero oil production. Clearly, a dry hole was 

not the firms’ expected outcome for these wells. 

In month t, the well’s drilling cost is equal to the sum of non-rig costs ci 

with the product of the dayrate Dt and the number of days di required to drill the 

well.
20

 Then, given an expected oil price Pt and a dayrate Dt, the expected profits 

πit from drilling the well are given by the function πi: 

                                                 
19

 A narrow view of ri suggests that I am assuming that the ongoing production from any 

previously drilled wells in the same field as well i is unaffected by the drilling of well i. This 

assumption is incorrect if the new well is, at least to some extent, only accelerating the recovery of 

reserves from the field rather than exploiting new reserves that the existing well stock did not 

reach. However, the model can handle wells drilled with the purpose of acceleration by 

interpreting the expected productivity ri as the expected production of the new well net of its 

expected impact on the production from the existing well stock (if any). 
20

 I assume that di does not vary over time. Learning-by-doing could cause di to decrease as more 

wells are drilled in the field (Kellogg 2011); however, since most of the observed sole-operated 

fields have only a few new wells during the sample, this effect is likely to be negligible. 

Technological progress might also decrease di over time; this possibility is part of the motivation 

for allowing for a time trend in an alternative specification. 
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(2) ( , )it i t t i t i i tP D rP c d D  

It will be useful for estimation to rearrange (2), defining the expected 

productivity of a well as the ratio of its expected production ri to its drilling cost 

at the average dayrate. Denote this cost by i i iC c d D   and let this ratio be 

denoted by xi. Further, let c  denote /i ic C  and let d  denote /i id C . Assuming that 

the ratio of non-rig costs to total costs at the average dayrate is constant across 

wells implies that both c  and d  are constant across wells (in the reference case 

model, I set 2 / 3c   and 1/ 3dD   per the discussion in section I.E). Then, 

expected profits πit can be re-written as (3) below, in which all cross-well 

productivity heterogeneity relevant to the drilling timing decision is collapsed into 

the single variable xi. 

(3) ( , ) ( )it i t t i i t tP D C x P c dD  

I treat all firms as price takers, in the sense that they believe that their 

decisions do not impact Pt or Dt. This assumption almost certainly holds 

institutionally. The market for oil is global, and Texas as a whole constitutes only 

1.3 percent of world oil production. With respect to oil producers’ monopsony 

power in the market for drilling services, the largest firm in the dataset is 

responsible for only 2.2 percent of all wells drilled in Texas during the sample 

period, a quantity that seems insufficient for exertion of substantial market power. 

Let the processes by which firms believe the price of oil and rig dayrates 

evolve be first-order Markov and given by (4) and (5) below. Pt denotes the oil 
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price (18-month NYMEX future) in the current month t, and Pt+1 is the price in 

month t+1. Dt and Dt+1 represent the current and next month’s dayrates.
21

 

(4) 
2

1 1

2ln ln ( , ) / 2t t t t t t tP P μ P σ εσ σ      

(5) 
2 2

1 1
ˆˆ ˆ ˆ ˆln ln ( , ) / 2t t t t t t tD D μ D σ σ σ ε      

The firm’s current expectation of the volatility of the oil price is denoted 

by σt, and the price shock εt+1 is an iid standard normal random variable that is 

realized subsequent to the firm’s drilling decision in the current period. Because I 

do not observe expectations of dayrate volatility ˆ
tσ , I assume this volatility is a 

scalar multiple of the oil price volatility so that ˆ
tσ = ασt. The cost shock 1t̂ε   is 

drawn from a standard normal that has a correlation of ρ with εt+1. 

2( , )t tμ P σ
 
and 

2ˆ ˆ( , )t tμ D σ denote the expected price and drilling cost drifts 

as stationary functions of the current expected level and volatility of the oil price 

and dayrate. Dependence of these drifts on the price and dayrate levels allows for 

the mean reverting expectations exhibited by NYMEX futures prices (figure 3). I 

also allow the drifts to depend on volatility because, as pointed out by Pindyck 

(2004), an increase in volatility may increase the marginal value of storage and 

therefore raise near-term prices. In addition, a volatility increase may also affect 

investments related to oil production and consumption (via the real options 

mechanism considered here, for example), affecting expectations of future prices. 

The specification and estimation of 
2( , )t tμ P σ

 
and 

2ˆ ˆ( , )t tμ D σ  is discussed in 

section IV.A, where I also discuss the estimation of the correlation of oil price 

shocks 1tε   
with dayrate shocks 1t̂ε  . 
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 These transition functions are the discrete time analogue to geometric Brownian motion with 

drift (see Dixit and Pindyck 1994). Volatility is assumed to be constant within each time step. 
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B. Optimal drilling with time-varying volatility 

The firm’s problem at a given time t is to maximize the present value of 

the well Vit by optimally choosing the time at which to drill it. This optimal 

stopping problem is given by (6) below, in which Ω denotes a decision rule 

specifying whether the well should be drilled in each period τ ≥ t as a function of 

Pτ and Dτ (conditional on the well not having been drilled already). Iτ denotes a 

binary variable indicating the outcome of this decision rule each period and δ 

denotes the firm’s real discount factor. 

(6) 
Ω

max ( , )τ t

it τ i τ τ

τ t

V E δ I π P D






 
  

 
  

In formulating (6), I assume that firms holding multiple drilling options 

treat them independently of one another. Given that I only observe zero or one 

well drilled in most fields in the sample, this assumption does not seem 

particularly strong. In those cases in which a firm holds multiple drilling options 

within the same field, it may be that the outcome from drilling one well may 

convey information regarding other prospects. That is, if the first well drilled by a 

firm in a field turns out to be highly productive, the firm may increase its estimate 

of xi for its remaining prospects.
22

 This contingent re-evaluation will result in 

temporal clustering of drilling activity in multi-well fields relative to what would 

be predicted by (6) alone. 

Because drilling a well is irreversible and because future prices and costs 

are uncertain, the decision rule for maximization of (6) is not simply to invest in 

                                                 
22

 The process by which firms learn about the quality of fields through drilling is examined by 

Levitt (2011), which develops and estimates a dynamic learning model. That paper’s approach 

cannot be used here because it requires data on oil production outcomes for all drilled wells and 

because the separate identification of learning effects and location-specific heterogeneity requires 

observations of different firms drilling wells in the same field (as well as an assumption of no 

cross-firm information spillovers).  
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the first period in which 0it  . The firm must trade off the value of drilling 

immediately against the option value of postponing the investment to a later date, 

at which time the expected oil price may be higher or the drilling cost lower. This 

trade-off is captured by re-stating the optimal stopping problem as the Bellman 

equation (7) below, in which Vi represents the current maximized value of the 

drilling option as a function of the state variables P, D, and σ (from which I now 

remove the subscript t). P’, D’, and σ’ denote next period’s state. 

(7)  ( , , ) max ( , ), E[ ( ', ', ')]i i iV P D σ π P D δ V P D σ   

Equation (7) includes the firm’s expected oil price volatility σ as a state 

variable even though it does not appear in the profit function πi(∙). Volatility 

impacts drilling decisions through its impact on the distribution of next period’s 

expected oil price P’ given the current expected price P. An increase in σ 

increases the variance of P’ conditional on P, thereby increasing the value of 

holding the drilling option relative to the value of drilling immediately. 

Intuition suggests that the solution to (7) will be governed by the 

following “trigger rule”: at any given P, D, and σ, there will exist a unique 

*( , , )x P D   such that it will be optimal to drill prospect i if and only if 

*( , ),ix x P D  . Furthermore, *x  will be strictly decreasing in P and strictly 

increasing in D and σ. The following conditions on the stochastic processes 

governing the evolution of P, D, and σ (none of which is rejected by the data) are 

sufficient for this trigger rule to hold. S denotes the state space. 

(i) [ ' | , , ]     , ,E P P D P P D S  (oil prices cannot be expected to rise 

more quickly than the rate of interest) 
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(ii) 
[ ' | , , ] 1E P P D

P
, with the same holding for D and σ, , ,P D S  

(the expected rates of change of each state variable cannot increase too 

quickly with the current state) 

(iii) ρ < 1 (oil price shocks and dayrate shocks are not perfectly correlated)  

(iv)  The distribution of P’ is stochastically increasing in P, with the same 

holding for D and σ 

(v) [ ( ', ', ') | , , ] ( , , )    , ,E P D P D P D P D S
 
(the Hotelling 

condition necessary for drilling to be optimal: expected profits cannot rise 

more quickly than the rate of interest) 

It is straightforward to show that conditions (i)-(iii) imply that 

( ) [ ( ' | )]s E s s   is strictly increasing in P and xi, and strictly decreasing in D 

and σ. Given this result and conditions (iv) and (v), a fixed point contraction 

mapping argument given in Dixit and Pindyck (1994) proves that the trigger 

*( , , )x P D   must exist. There must also exist similar triggers 
*( , , )iP D x , 

*( , , )iD P x , and 
*( , , )iP D x , representing the minimum price, maximum 

drilling cost, and maximum volatility at which drilling is optimal as functions of 

the other variables. The existence of all four triggers implies that 
*( , , )x P D   

must be strictly decreasing in P and strictly increasing in D and σ. 

Thus, an increase in expected volatility σ will cause a fully optimizing 

firm to increase the productivity trigger *x  necessary to justify investment, 

holding the expected price and dayrate constant. Consider such a firm for which 

the price volatility expectation σ is equal to the volatility implied by the futures 

options market, which I denote by σ
m
. Figure 6 illustrates how the firm’s critical 

productivity *x  will vary with P and σ
m
 for a well with an average drilling cost at 
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the average sample dayrate. The relationship between *x  and P is shown at both 

low (10 percent) and high (30 percent) levels of expected price volatility σ
m
. At 

both volatility levels, *x  decreases with price so that less productive wells may be 

drilled in relatively high price environments. Holding price constant, *x  is greater 

in the high volatility case than the low volatility case. 

[Figure 6 about here] 

Now, however, suppose that firms have time-varying expectations about 

future volatility that coincide with those of NYMEX market participants but do 

not take these expectations into account when making drilling decisions, so that in 

terms of the model σ is effectively constant over time. In this case, the two lines in 

figure 6 will coincide. It is this difference in investment behavior between firms 

that respond to σ
m
 and those that do not that will provide identification in the 

empirical exercise described below. Note, however, that an observed lack of 

response to σ
m
 could also reflect the possibility that, while firms properly take 

expected volatility into account when making investment decisions, they hold a 

belief that volatility σ is constant over time rather than equal to the time-varying 

σ
m
. Thus, to the extent that the data imply differences between σ and σ

m
, I will not 

be able to identify whether the differences are due to sub-optimal investment 

decision-making or to differences between firms’ beliefs and those of the broader 

market. 

I capture the extent to which firms optimally respond to the market’s 

implied volatility σ
m
 by parameterizing firms’ beliefs through a behavioral 

parameter β. First, I define lnσ  to be the average log of the market volatility over 

the first year of the sample (12.8 percent) and let ln d  be the deviation of ln m  

from lnσ . That is: 

(8) ln ln lnm dσ σ σ   
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I then relate the firms’ expected volatility σ to σ
d
 via (9): 

(9)      ln ln ln dσ σ β σ   

Through this formulation, the behavioral parameter β regulates the extent 

to which firms respond to changes in σ
m
. A firm that behaves according to β = 1 is 

a firm that shares the market’s beliefs regarding future price volatility and 

correctly optimizes its investment decisions according to those beliefs. 

Conversely, a firm with β = 0 does not respond to changes in σ
m
 because it either 

has beliefs that are orthogonal to σ
m
 or does not optimize its investment decisions 

correctly. The primary objective of the empirical work is to obtain an estimate of 

β and test whether the estimate is consistent with investment behavior that is an 

optimal response to beliefs that coincide with those of the market. 

The final component of the model is the process by which firms believe 

volatility itself evolves over time. Like the price and dayrate processes, I assume 

this process is first-order Markov per equation (10): 

(10) 
2' ( ) / 2 'ln ln m

σ

m m μ σ γ γησ σ     

In (10), γ denotes the volatility of the volatility process, and η’ is an iid 

standard normal random variable. μσ(σ
m
) denotes the expected change in volatility 

as a function of the current volatility. This function can be set to zero to allow for 

random walk beliefs or it can be specified to allow for mean reversion, though in 

practice the distinction will not substantially impact the estimation results. I 

discuss the specification of μσ(σ
m
) and the estimation of γ in section IV.A below. 

Note that, by specifying the volatility evolution process on market volatility σ
m
, 
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firms’ beliefs about the evolution of their expected volatility σ will be scaled by 

β.
23

 

 

IV. Empirical Model and estimation 

The parameter of primary interest is β, the behavioral parameter that 

reflects firms’ sensitivity to the implied volatility of the price of oil. To obtain an 

estimate of β, I must also estimate the parameters α, ρ, and γ that govern the state 

transition processes as well as the oil price and dayrate drift functions 
2( , )t tμ P σ

 

and 
2ˆ ˆ( , )t tμ D σ . An estimate of the discount factor δ is also required. In what 

follows, I first discuss how I estimate these “secondary” parameters 

independently of the full model before turning to the estimation of β via a 

procedure based on the nested fixed point approach of Rust (1987). 

 

A. Estimates of the discount factor and state transition processes 

While the firms’ discount factor δ can in principle be estimated as part of 

the nested fixed point routine, obtaining precise inference in practice is 

challenging. I adopt the standard approach in the literature by setting δ in 

advance. According to a 1995 survey by the Society of Petroleum Evaluation 

Engineers, the median nominal discount rate applied by firms to cash flows is 

12.5 percent. Given average inflation over 1993-2003 of 2.36 percent, I set δ 

equal to the quotient 1.0236 / 1.125, approximately 0.910. 

I assume that 
2( , )t tμ P σ , the expected drift of the log oil futures price, is 

the stationary linear function given by (11): 

 (11) 
2 2

0 1 2( , )t t p p t p tμ P σ κ κ P κ σ    
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 Specifically, firms’ belief about the volatility of volatility will be βγ, and their belief about the 

expected drift of volatility will be βμσ(σ
m
). 
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Per equation (4), consistent estimates of κp0, κp1, and κp2 may be obtained 

via an OLS regression of E[ln Pt+1] – ln Pt + 
2 / 2tσ  

on Pt and 
2

tσ . Because the 

reference case specification uses 18-month futures prices for Pt, I use 19-month 

futures prices to measure E[ln Pt+1] in this regression. I estimate that κp0 = 0.0094, 

κp1 = -0.00054, and κp2 = 0.401. These values are consistent with mean reversion 

to an oil price of $19.51 per barrel at the sample average volatility of 19.4 percent.  

I similarly assume that 
2ˆ ˆ( , )t tμ D σ , the expected dayrate drift, is a linear 

function of the current dayrate, so that 
2 2

0 1 2
ˆ ˆ ˆ( , )t t d d t d tμ D σ κ κ D κ σ   . There does 

not exist a futures market for rig dayrates to facilitate estimation of the κd. Rather 

than attempt to estimate these parameters from a short time series of quarterly 

drilling cost observations, I instead assume that the parameters κd0, κd1, and κd2 

match those from the oil price drift equation, with κd1 re-scaled by the ratio of the 

average dayrate to the average oil price. 

I next estimate the scalar parameter α, the ratio of dayrate volatility ˆ
tσ  to 

oil price volatility σt. To do so, I first calculate 1ln lnt t tξ P P 
 
and 

1
ˆ ln lnt t tξ D D    in each period. α is then estimated by the ratio of the standard 

deviation of ˆ
tξ  to the standard deviation of tξ . I then estimate ρ, the parameter 

governing correlation between dayrate and oil price shocks, to be the correlation 

coefficient between ˆ
tξ  and tξ . The estimate of α is 1.16, and that for ρ is 0.413.  

Finally, I specify and estimate equation (10), which dictates how firms 

believe current implied volatility σ
m
 will evolve into next month’s implied 

volatility. There do not exist markets that allow for direct measurement of either 

the expected change in volatility μσ(σ
m
) or the volatility of volatility γ. I therefore 

rely on the time series of volatility realizations. For μσ(σ
m
), I make use of two 

specifications: the first is a random walk volatility forecast (μσ(σ
m
) = 0), and the 
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second is a mean-reverting expectation. Firms might reasonably have a random 

walk forecast because a unit root cannot be rejected in the implied volatility 

data.
24

 Alternatively, the GARCH analysis of historic volatility realizations 

discussed in section I.D indicates modest mean reversion in expected future 

volatility. When the month-ahead GARCH forecast (the forecast used in 

generating the time series in figure 4) is relatively high, the two-month ahead 

forecast predicts a fall in volatility, and the reverse holds when the month-ahead 

forecast is relatively low. Therefore, as an alternative to the random walk, I also 

estimate μσ(σ
m
) using expected mean reversion rates derived from the GARCH 

forecasts. I estimate that, in a simple linear mean reversion model, the expected 

change in logged volatility is given by 0.0326 minus 0.0010 times the current 

volatility (in annualized percent).
25

 This estimate implies that if the current 

volatility is 10 percent, then the expected volatility next month is 10.22 percent. 

In contrast, if the current volatility is 35 percent, then the expected volatility next 

month is 34.86 percent. 

In the random walk specification, I estimate γ, the volatility of the 

volatility process, to be the standard deviation of 1ln lnm m

t tσ σ  . This value is 

0.119. Under the mean-reverting specification, I first correct 1ln lnm m

t tσ σ   for the 

predicted change in volatility between the two months before taking the standard 

deviation. This value is 0.118. 

 

B. Primary empirical model and estimation 

                                                 
24

 In an augmented Dickey-Fuller test, the p-value for rejecting the null of a unit-root process with 

12 lags is 0.2417. 
25

 To obtain this estimate, I regress, for each month for which 4 years of data are available to 

estimate the GARCH model (July 1994 – Dec 2003), the difference between the two-month and 

one-month GARCH volatility forecasts on the one-month GARCH forecast. I then correct the 

constant term by γ squared divided by two. 
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Given the state transition functions estimated above, the remaining 

unknowns in the econometric model are the behavioral parameter β and the 

unobserved expected productivity of each drilling prospect, the xi. Given a value 

for β and the realized oil prices, dayrates, and oil price volatilities, the solution to 

the model determines the productivity cutoffs 
*

tx  each period. Because all firms 

face the same price, volatility, and dayrate processes,
*

tx  will be the same for all 

prospects in the data at any given time. If xi is modeled as identical across 

prospects, then all firms would make the decision to drill at the same time, a 

prediction that conflicts with the spread of drilling activity over time evident in 

figure 1. Clearly, there must exist a distribution of xi across prospects.  

It is therefore tempting, at first, to estimate a model in which expected 

productivity xi varies across prospects but for each individual prospect is constant 

over time. However, this model is also incapable of rationalizing the data. Given 

the trigger rule described in section III, such a model implies that in each period t 

all wells with productivity 
*

tix x  will be drilled. Now consider what would 

happen should x
*
 rise in period t+1, perhaps because the oil price fell or because 

volatility increased. In this case, only prospects with 
*

1i tx x   will be drilled. 

However, all such prospects will already have been drilled in period t since
 

* *

1t tx x  . Thus, an implication of a model in which xi does not vary over time is 

that there cannot be any drilling activity following an increase or no change in x
*
. 

Such a model is clearly inconsistent with the drilling data. In 1999, for example, 

the expected price is considerably lower than it was in 1998 and the expected 

volatility is higher; however, drilling activity does not go to zero.  

To fit the data, the model requires changes in the xi over time or some 

other mechanism to smooth out drilling activity. That said, the true productivity of 

each prospect is constant, since the underlying geology is time-invariant. 
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Moreover, new information that would cause a firm to update its expectation of a 

prospect’s productivity does not arrive exogenously on its own, since the 

prospective reservoir is buried thousands of feet below the surface. Nonetheless, 

there exist several possible mechanisms capable of explaining the drilling data. 

First, a firm’s evaluation of any given prospect’s productivity is likely not stable 

over time, even if the information set does not change. The process by which 

geologists and engineers develop an estimate of a prospective well’s production is 

inherently challenging and error-prone. They must make inferences about a buried 

oil reservoir using only limited information from seismic surveys, production 

outcomes from previously drilled wells, and electromagnetic “logs” of the rock 

characteristics at nearby wells. Any individual geologist or engineer may change 

his or her views regarding a prospect as more time is spent studying the 

information, and different personnel may draw different conclusions from the 

same set of information (much like different econometricians may draw different 

inferences from the same data). Such re-evaluations of prospects, which are 

anecdotally common in the industry, particularly if there is personnel turnover, 

can drive substantial variation in a prospect’s xi over time. Second, firms may 

sometimes “discover” new prospects in old fields in their analyses of their data. 

Observationally, such discoveries are equivalent to an increase in the xi of what 

had been a low-quality prospect. Third, firms can engage in costly gathering of 

information by, for example, taking a seismic survey of their field, thereby 

triggering a revision of expected productivity. Similarly, the results from the 

drilling of one well may yield information about the quality of another prospect. 

Finally, variance in the lag between the decision to drill and the actual 

commencement of drilling may arise due to delays in engineering design, 

management approval, permitting, or drilling contracting. These stochastic lags 

will lead to drilling at times not predicted by the model. 
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Rather than separately model each of the mechanisms above, I instead 

account for them jointly by allowing each well’s expected productivity xi to vary 

over time. In the absence of data on firms’ engineering estimates, their use of 

seismic surveys, or well-specific delays in drilling, separate identification of each 

source of time variation would require strong functional form assumptions and a 

substantially more complex model than that given here.
26

 Allowing the xi to vary 

over time is closest in spirit to the prospect re-evaluation mechanism and is 

sufficient for the model to predict drilling activity following an increase in the 

productivity cutoff x*.  

In the reference case empirical specification, I treat the log of expected 

productivity as an iid normal variable across both prospects i and time t, with a 

mean μ and variance ζ that are to be estimated in the main estimation procedure 

(along with the behavioral parameter β). Given μ and ζ, the number of wells that 

the model predicts will be drilled at any time t is given by the expected number of 

prospects for which xit exceeds 
*

tx .  

Despite the emphasis of the above discussion on time variance in xit, there 

may exist some persistent cross sectional heterogeneity in the expected 

productivity of each prospect. I therefore also consider a model in which log xit is 

the sum of a time-invariant normally distributed random variable φi, with mean 

and standard deviation given by μ1 and ζ1, and an iid normal variable νit with a 

zero mean and standard deviation ζ2. In this specification, I estimate μ1, ζ1, and ζ2 

in addition to β. 

                                                 
26

 For example, a firm that undertakes a seismic survey is in reality making an endogenous 

investment that should in principle be modeled dynamically in conjunction with the drilling 

model.
 
The present model can, however, accommodate costly information gathering to the extent 

that drilling a well can be viewed as a compound investment: when prices rise or volatility falls so 

that the firm contemplates drilling, it undertakes a seismic survey before drilling the well. I also 

continue to model each prospect independently, abstracting away from the process by which the 

drilling of a well in a field can influence the firm’s beliefs about other prospects in the same field. 

This abstraction may result in un-modeled correlation of drilling activity in fields with multiple 

wells drilled, motivating the use of a clustered variance-covariance estimator (Wooldridge 2002). 
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Note that I do not explicitly model expected productivity as a stochastic 

state variable when solving the Bellman equation (7). That is, I do not model 

firms as anticipating or waiting for future changes in xi, so that there is no option 

value in this dimension. I do so because the mechanisms discussed above that 

drive changes in the xi over time do not reflect exogenous inputs of new 

information or actual changes in the underlying geology, so that firms do not 

anticipate and wait for exogenous productivity shocks (unlike, for example, the 

Rust (1987) model in which Harold Zurcher receives new information about the 

state of each bus when it arrives in his shop).
27

 This modeling choice is supported 

by the data. If I instead structure the model so that firms do anticipate productivity 

shocks, the model’s ability to match actual drilling behavior is substantially 

reduced because firms have a very strong incentive to wait for a large positive 

shock and then drill as soon as one is realized. This incentive effectively mutes 

firms’ incentive to respond to uncertainty about future oil prices, so that the model 

fails to predict the response of drilling to oil price volatility that is apparent in the 

data.
28

 

Given the state transition processes discussed in section IV.A, the 

parameters governing the distribution of the xit, the behavioral parameter β, and 

the realized monthly time series of futures prices, rig dayrates, and implied 

volatilities (denoted by P, D, and σ, respectively), the model’s solution yields the 

likelihood that a given prospect will be drilled in any given month t conditional on 

                                                 
27

 In the context of firms’ revisions of a prospect’s expected productivity based on a re-analysis of 

pre-existing information, thinking of firms as anticipating and waiting for future shocks to 

expected productivity seems problematic because neither the underlying true productivity of the 

prospect nor the available information will actually change. The possibility that an engineer might, 

in the future, positively update the evaluation of the prospect doesn’t actually increase the 

prospect’s value, so firms shouldn’t wait for such re-evaluations. 
28

 The estimated variance over time in expected productivity is sufficiently large (in order to 

rationalize drilling during low price periods) that it swamps oil price volatility. When I model 

firms as anticipating this variation, increasing β to even 2.0 has essentially no effect on simulated 

drilling. 
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not having been drilled already. This likelihood is simply the probability that xit 

exceeds the trigger productivity 
*

tx . Starting from the initial period of January 

1993, these conditional probabilities yield the probability that any given prospect 

will be drilled in each month t as well as the probability that the prospect will not 

be drilled by the end of the sample.
29

 These probabilities form the basis for the 

likelihood function. Let Iit denote an indicator variable that takes on a value of one 

if prospect i is drilled in month t and zero otherwise, let T denote the final month 

of the sample, let Nt denote the number of wells actually drilled at t, and let N0 

denote the number of prospects not drilled (N0 = 6,637, the number of undrilled 

sole-operated fields).
30

 The log-likelihood function is therefore: 
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Estimation of β, μ, and ζ is carried out by maximizing this likelihood 

function using a nested fixed point routine. The outer loop searches over the 

unknown parameters while the inner loop solves the model and calculates the 

likelihood function at each guess. Details regarding this simulation and estimation 

procedure, such as the discretization of the state space used to numerically solve 

the model, are provided in appendix 2. The specification with cross-sectional 

heterogeneity proceeds by integrating the likelihood over the distribution of φi.  

                                                 
29

 For example, the probability that the prospect will be drilled in February 1993 is the conditional 

probability that it is drilled in February 1993 multiplied by probability that it was not drilled in 

January 1993. The probability that it is drilled in March 1993 is then the conditional probability 

that it is drilled in March 1993 multiplied by probability that it was not drilled in February 1993 or 

earlier, and so on. 
30

 Throughout this section, I use “drilled” as shorthand for the drilling decision. As with the 

descriptive hazard model, I allow for a three-month lag between the drilling decision and the 

actual start of drilling. Thus, for example, the model’s drilling probability for January 1993 is 

matched with drilling activity for April 1993. The final period of the sample is September 2003, 

which is matched with drilling activity for December 2003. 
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V. Estimation results and discussion 

A. Reference case estimation results 

I begin by estimating the version of the model in which log xit is assumed 

to be iid across prospects i and time t. As a baseline, column I of table 2 provides 

the estimation results when I impose the restriction that β = 0; that is, firms do not 

respond to changes in implied volatility.
31

 I find that a broad distribution of 

expected productivity xit is needed to sufficiently smooth the model’s simulated 

drilling activity such that it rationalizes the data. The estimated mean μ and 

standard deviation ζ of log xit are -0.431 and 3.023, respectively. Here, and 

throughout the presentation of the results, xit is given in barrels of expected 

discounted production per $100,000 of drilling cost at the average rig dayrate. 

These estimates together imply that, in the model, the average prospect at any 

point in time is expected to produce only 63 barrels of oil per $100,000 of cost, 

well below the productivity necessary to justify investment at any reasonable oil 

price.
32

 This estimate reflects the presence of a large number of fields in the data 

(6,637) in which no drilling occurs. A large estimate of the variance ζ is therefore 

necessary to rationalize the observed drilling. For example, a prospect with 

average costs and a log xit 3.5 standard deviations greater than the mean will be 

expected to produce 25,578 barrels of oil, sufficient to trigger drilling over a 

range of prices and implied volatilities in the sample. 

[Table 2 about here] 

In column II, I allow β to be a free parameter and model firms as having 

random walk beliefs about future volatility. I obtain a point estimate of β of 1.118. 

This value is very close to one in both an economic and statistical sense (the 

                                                 
31

 With β = 0, the random walk and mean reverting specifications for future volatility are 

equivalent. 
32

 The 63 barrel per $100,000 figure is equal to exp(-0.431 + 3.023
2
/2). 
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standard error is 0.141),
33

 consistent with an optimal response of investment to 

volatility expectations that match the implied volatility of NYMEX futures 

options.
34

 Moreover, a likelihood ratio test strongly rejects, with a p-value less 

than 0.001, a null hypothesis that firms do not respond at all to implied volatility 

(β = 0).
35

 The time series of predicted drilling under models I and II are given in 

figure 7, alongside actual drilling activity.
36

 The prediction from model II, 

allowing for a response to volatility, yields a better fit to the data, particularly 

during the 1999 low price period and the volatility spike following September 

11
th

, 2001. More broadly, the model that does not allow a response to time-

varying volatility under-predicts drilling in the early part of the sample and over-

predicts drilling in the latter part. Allowing for a volatility response largely 

corrects these mis-predictions, though there remain sections of the time series, 

                                                 
33

 Standard errors are clustered on field (thereby accounting for within-field spatial and serial 

correlation) and take into account the standard errors of the estimated parameters in the price drift 

function (11). Clustering the standard errors on month-of-sample, which would account for 

broader cross-sectional correlation (perhaps associated with technological or macroeconomic 

shocks), generally results in smaller standard errors than those that are not clustered at all. See 

appendix 2 for details on the standard error calculations.  
34

 Note that, in column II, the distribution of log xit is estimated to have a lower mean and higher 

variance than in column I. This shift in parameters is necessary to rationalize non-zero drilling 

activity in early 1999 when oil prices were low and implied volatility was high: the increased 

variance allows simulated prospects to have an expected quality xit greater than the high drilling 

trigger productivity xt* during this period. 
35

 Rejection of the restricted estimate with a test size of 5 percent requires a difference in log 

likelihoods of 1.92. A likelihood ratio test does not take clustering of the likelihood scores on field 

into account so will therefore underestimate the true p-value. 
36

 To connect the structural model to the descriptive hazard model from section II, I have taken the 

simulated drilling data and used it to re-estimate specification II from table 1 (technical note: to 

deal with the fact that the number of simulated wells each month is not an integer, I multiply the 

number of wells by ten and then round to the nearest integer before estimating (I also multiply the 

number of undrilled wells by 10)). The estimated coefficients on the oil price, volatility, and 

drilling cost are 1.034, 0.966, and 0.949. Each of these numbers is well within the 95 percent 

confidence interval of the estimates obtained from the actual data as presented in table 1, column 

II.  



 37  

such as early 1997, that the model does not fit well (and, of course, the model 

smoothes over the month-to-month noise in the actual drilling data).
37

 

[Figure 7 about here] 

In table 2, column III, I model firms as having mean-reverting beliefs 

about future volatility. When endowed with these beliefs, firms believe that 

changes in volatility will not be persistent, and they will therefore not respond as 

strongly to such changes as they would with a random walk forecast. Thus, the 

column III estimate indicates a higher value of β of 1.191 (s.e. = 0.188) because 

the value of 1.118 from column II will not yield sufficient sensitivity to volatility 

to match the data.
38

 The random walk and mean-reverting models yield nearly 

identical log likelihoods (-8661.2 versus -8661.3), so they cannot be distinguished 

by the data. In the presentation of the results from alternative specifications and 

robustness tests below, I will focus on the results from the random walk 

specification and simply footnote the mean reverting results, which are 

consistently qualitatively similar to those from the random walk specifications. 

When a model allowing for time-invariant prospect-specific heterogeneity 

is estimated, the log-likelihood is maximized when this heterogeneity (ζ1) is zero 

and the model’s other parameters match the table 2, column II or column III 

estimates discussed above (depending on whether the random walk or mean-

reverting volatility specifications, are used). Persistent prospect-level 

heterogeneity would be manifest in the data as a steady decrease in the rate of 

drilling activity over time as the best prospects are gradually removed from the 

                                                 
37

 Estimating the model on the sample of all infill wells, rather than the reference case sample of 

infills in sole-operated fields, yields essentially the same estimate of β as in the reference case (the 

point estimate is 1.117). The reduction in the noise in the drilling data (see appendix figure A1 for 

a plot of drilling data from all infill wells) also improves the fit of the model: when I regress actual 

drilling on simulated drilling, I obtain an R
2
 of 0.260 with the reference case data and 0.471 with 

the data from all infills. 
38

 To be clear, this estimate uses implied volatility, not GARCH volatility, as the measure of 

expected volatility over the current month. The GARCH model is used only to generate a forecast 

of expected mean reversion. 
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pool.
39

 However, such a decrease is not a prominent feature of the data. An 

explanation for the lack of empirical support for prospect-level heterogeneity is 

likely to be that all drilling prospects were marginal at the start of the dataset in 

1993. Any particularly promising prospects were likely to have already been 

“skimmed off” before this year, especially given that there were periods of very 

high oil prices in the early 1980s and during 1990-1991. Thus, at the beginning of 

my dataset in 1993, there were no ex-ante “best” prospects in the pool to drill 

first, meaning that overall prospect quality—and therefore the rate of drilling—

would not decline substantially over time.
40

 

 

B. Firms’ incentive to respond optimally 

Why might the estimate of drilling activity’s response to changes in 

expected volatility accord so well with theory? Given the small size of many of 

the firms in the data, it seems unlikely that they are formally solving Bellman 

equations. However, they may have developed decision heuristics that roughly 

mimic an optimal decision-making process. Moreover, the firms have a strong 

financial incentive to get their decision-making at least approximately right. 

Consider a firm that has a drilling prospect of average cost that is expected to 

produce 17,000 bbl and faces an average dayrate (so that the drilling cost is 

$386,501). The value of the prospect to the firm, over a range of prices and for 

several expected price volatilities, is given in figure 8. Suppose that the firm is 

somewhat myopic, acting as if volatility were 15 percent when volatility is 

actually 30 percent (both of these values are well within the range of in-sample 

                                                 
39

 Even without time-invariant prospect-level heterogeneity, the model would still predict a steady 

decrease in drilling over time because the total number of prospects available (7,787) is finite. 

Adding time-invariant heterogeneity steepens the rate of decrease. 
40

 It may also be that the effects of any decline in prospect quality over time caused by 

heterogeneity have been masked by technological improvements, such as adoption of 3D seismic 

imaging, that have pushed prospects’ expected productivity upward. 
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realizations). In this case, the firm will incorrectly choose to drill when the oil 

price is between $29 and $35/bbl, losing as much as $29,000 in value. Put another 

way, behaving optimally rather than myopically in this example can increase the 

prospect’s value by 27 percent. Expanding the range of volatilities, and therefore 

the extent to which the firm can be incorrect, naturally increases the potential loss 

from sub-optimal behavior. In the extreme, ignoring volatility—and therefore 

option value—altogether can cause a firm to drill a prospect with an expected 

profit of nearly zero despite the fact that holding the prospect can have substantial 

value. In the example above, a firm that completely ignored price volatility of 30 

percent would drill at a price of $23/bbl, achieving an expected profit of $4500, 

even though holding the prospect has a value of $135,000. 

[Figure 8 about here] 

Do different types of firms respond differently to volatility shocks? In 

figure 9 and columns IV and V of table 2, I examine whether there is a difference 

in drilling behavior between small and large firms. I classify each firm as small or 

large based on the total number of wells (including non-infill wells) the firm drills 

during the 1993-2003 sample period, splitting the sample at the median number of 

wells per firm.
41

 Figure 9 plots the time series of drilling activity by each type of 

firm against futures prices and implied volatility. Though the time series are 

noisy, the drilling rates of small and large firms overlay each other fairly closely, 

suggesting that the two types respond similarly to price and volatility signals. 

When I estimate the model separately for each type, the estimates are statistically 

and economically indistinguishable: the estimated β for small firms is 1.136 while 

that for large firms is 1.085 (columns IV and V of table 2).
42

 Thus, it is not the 

                                                 
41

 In the reference case sample (1,150 infill wells in sole-operated fields), the median well is 

drilled by a firm that drilled 49 wells in total over 1993-2003. 
42

 Under a hypothesis that firms believe volatility is mean reverting, the point estimates (standard 

errors) for β in columns IV and V are 1.212 (0.187) and 1.181 (0.201), respectively. The log 

likelihoods are -4350.7 and -4310.0. 
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case that small firms in this industry are “unsophisticated” and cannot respond 

properly to market signals. Instead, small firms respond to volatility shocks as 

optimally as do large firms, perhaps reflecting the possibility that it is difficult for 

a firm to survive in this highly competitive environment if its decision-making is 

poor. 

[Figure 9 about here] 

 

C. Sources of identification 

The above results indicate that, in periods of high expected oil price 

volatility, drilling activity falls in a way that is commensurate with the predictions 

of real options theory. This section examines which aspects of the data drive the 

identification of this result and also studies whether realized production data can 

offer additional identifying variation. 

A prominent feature of the data is that volatility is greater at the end of the 

sample than at the beginning, and drilling activity is lower at the end of the 

sample then at the beginning. This feature raises the question of the extent to 

which identification is coming from an overall trend in the data. I examine this 

issue by including in the model a time trend in wells’ expected productivity xit. 

The results from estimating this model are presented in column II of table 3. I find 

that the estimated time trend is effectively zero, with a point estimate of a 

productivity increase of about 0.1 percent per year that is not statistically 

significant. Moreover, the estimate of β is virtually unchanged.
43

 This result is 

related to the lack of evidence for prospect-specific heterogeneity, which, like a 

time trend, would be manifest as a steady decrease in drilling activity over time. 

Identification of β does not appear to arise from such a trend. 

[Table 3 about here] 

                                                 
43

 Under a hypothesis that firms believe volatility is mean reverting, the point estimate (standard 

error) for β in table 3, column II is 1.194 (0.189), with a log likelihood of -8661.3. 
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I next examine the extent to which the reference case results are driven by 

the sharp increase in volatility and commensurate decrease in drilling activity that 

occurred in the summer of 1998. To do so, I model a permanent shock to the xit 

that begins in July 1998 and is common to all prospects, thereby removing this 

source of identifying variation. The results from estimating the model while 

including this shock are given in column III of table 3. The estimated shock is 

large, decreasing log xit by 0.433, although it is not statistically significant. The 

point estimate of β is not significantly affected, changing from 1.118 in the 

reference case to 1.137 here.
44

 This result suggests that identification does not 

strongly rely on the substantial changes that occurred in the summer of 1998—

other variation, such as that occurring around the events of September 11
th

, 2001, 

is also important.
45

 However, with the inclusion of the post-July 1998 

productivity dummy, the likelihood function exhibits strong non-concavities, and 

the data cannot reject an alternative local maximum at β = 0.453, shown in 

column IV of table 3 (the difference in log likelihoods between columns III and 

IV is only 0.4). Thus, statistical power is coming in no small part from the sharp 

changes in volatility and drilling that occurred in 1998.
46

 

                                                 
44

 Under a hypothesis that firms believe volatility is mean reverting, the point estimate (standard 

error) for β in table 3, column III is 1.208 (0.198), with a log likelihood of -8659.1. There is an 

alternative local maximum with an estimated β of 0.385 and a log likelihood of -8660.4. 
45

 I have also examined the importance of 9/11 to the results by estimating a specification in which 

there is a common shock across all prospects for September 2001 through January 2002. The log-

likelihood for this specification is maximized at β= 1.101, though again there is another local 

maximum at 0.631. The difference between these estimates’ log-likelihoods is larger than that of 

the post-July 1998 shock model, however. The log likelihood at the estimate of 1.101 is -8661.0, 

while that at the 0.631 estimate is -8662.4. A likelihood ratio test rejects the local maximum at the 

10 percent level, with the caveat that this test does not take the clustering of standard errors into 

account. 
46

 It seems unlikely that there was an actual sudden (and potentially confounding) drop in wells’ 

productivity in 1998, since productivity is a function of geology and there is no obvious reason 

why firms’ beliefs about the geologic characteristics of oil reservoirs would simultaneously 

decrease. In addition, the statistical insignificance of the estimated coefficient on the post-July 

1998 dummy in column III is consistent with the absence of a true shock. 
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Finally, I explore the extent to which the data on realized production—for 

the subset of 160 wells for which production is observable—can provide 

additional information for identification of β. In principle, the realizations of well 

productivity (discounted lifetime production divided by the cost of drilling) 

should be related to variation in the trigger productivities x* over time and should 

therefore be informative for β. Below, I summarize my use of the productivity 

data in this regard; details can be found in appendix 3. 

To make the production data comparable to the x* trigger productivities, I 

first transform them from production over the first three years of each well’s life 

to total discounted production over each well’s lifetime, estimating hyperbolic 

decline curves to carry out the extrapolation. I then divide each well’s discounted 

lifetime production by its estimated drilling cost at the average dayrate to obtain 

its realized productivity (in barrels per $ of drilling cost). Figure 10 plots (in logs) 

each well’s thusly calculated realized productivity against the x* productivity 

triggers generated by the reference case model. This figure reveals two obstacles 

to using the realized productivity data in the model. First, these data are extremely 

noisy, reflecting the substantial geologic uncertainty involved in drilling for oil 

and masking any obvious relationship between realized productivity and x*. 

Second, in this sample of wells average productivity falls substantially below the 

average x*. This shortfall is consistent with selection: the wells for which 

productivity is observable are those drilled in leases in which no other wells were 

subsequently drilled or operated, and this lack of follow-up activity may have 

been due to poor results from the initial well. Data from the 367 drilled wells for 

which I have production data but there also exist other active wells provide 

support for this selection mechanism, in that they exhibit substantially higher 

productivity on average.
47

 Figure 10 also provides the logged “break-even” 

                                                 
47

 For these 367 wells, the noise in their leases’ monthly production data makes it impractical to 

estimate each well’s productivity. However, I have estimated the average production across these 
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productivity each period. This productivity level falls below x* due to option 

value, and the figure shows that the median well for which production is observed 

performs slightly worse than break-even. In levels, however, the right-tail of 

highly productive wells implies that these 160 wells earn strictly positive profits 

on average, consistent with real options theory’s prescription that expected profits 

from irreversible investments should be strictly positive.
48

 

[Figure 10 about here] 

With the above issues in mind, I augment the model and likelihood 

function to incorporate the productivity realization data. As discussed in detail in 

appendix 3, the augmented likelihood function takes into account both the 

probability of each productivity realization (which will depend on x* each period 

and on the estimated variance of productivity realizations about their expectation) 

and the probability that production is observable for each drilled well (which will 

depend on the well’s productivity). I find that making use of the production data 

does not substantially influence the estimate of β. As shown in column V of table 

3, the estimate of β in this specification is 0.923 with a standard error of 0.169, 

still consistent with an optimal response by firms to changes in oil price 

volatility.
49

 The production data do shift the estimated distribution of well 

productivities, raising the mean μ and lowering the standard deviation ζ, though 

the estimates still lie well within the 95 percent confidence interval from the 

                                                                                                                                     
wells. They are substantially more productive on average than the 160 drilled wells that are the 

only active wells on their lease, consistent with selection. The estimated average log realized 

productivity in the 367 well sample is -2.482, while that for the 160 well sample is -4.109. 

Consistent with the selection story, the majority of these wells’ leases exhibit production from 

wells that come online after the well in question was drilled. 
48

 The average estimated discounted profit for the 160 well sample is $243,720, relative to an 

average drilling cost of $403,697. The median well, however, loses $121,469. 
49

 Under a hypothesis that firms believe volatility is mean reverting, the point estimate (standard 

error) for β in table 3, column V is 0.938 (0.172), with a log likelihood of -9457.7. 
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reference case.
50

 The full set of estimated parameters from this model is given in 

appendix 3. 

 

D. Alternative specifications  

Alternative measures of expected volatility 

The analysis thus far has used implied volatility from the NYMEX futures 

options market as the measure of firms’ oil price volatility expectations. Table 4, 

column II reports results in which expected volatility is instead measured by the 

historic volatility of futures prices over a one year rolling window. The use of 

historic volatility yields a worse fit to the drilling data than does implied 

volatility, evidenced by the substantial decrease in the log likelihood relative to 

the implied volatility results in column I. Moreover, the estimate of β is only 

0.348 and not statistically significant, indicating that firms do not respond as 

strongly to historic volatility as they do to volatility signals that are reflected in 

the NYMEX futures options market.
51

  

[Table 4 about here] 

Column III of table 4 uses the GARCH(1,1) model to forecast future 

volatility. This model yields an estimate of β of 0.587 that is statistically 

significant at the 1 percent level, though the fit of the model is still substantially 

worse than when implied volatility is used (the decrease in the log likelihood is 

equal to 4.8). The reduced fit reflects the fact that, while GARCH provides a 

closer match to implied volatility than does historic volatility, the GARCH and 

implied volatility series still diverge substantially at several points in time (figure 

4). This result, as well that obtained from the direct use of historic volatility, 

                                                 
50

 These changes have a net effect of reducing expected production conditional on drilling, thereby 

better matching the production data. 
51

 Under a hypothesis that firms believe volatility is mean reverting, the point estimates (standard 

errors) for β in columns II,  III, and IV are 0.292 (0.323), 0.790 (0.281), and 1.690 (0.447), with 

log likelihoods of -8669.7, -8666.1, and -8663.8, respectively. 
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suggests an explanation for why some previous empirical studies (Hurn and 

Wright 1994, Moel and Tufano 2002) have not found strong evidence that time-

varying volatility significantly affects investment. These studies measure firms’ 

volatility expectations using historic volatility, which may only be a noisy 

measure of firms’ true beliefs because it does not reflect up-to-date information 

regarding volatility shocks. 

 

Front-month rather than futures prices 

Column IV of table 4 considers a model in which firms respond to the 

front-month price and volatility of oil rather than 18 month futures and 

volatilities. I replace the price series Pt with the NYMEX front-month futures 

contract, and I replace the market’s implied 18-month price volatility σ
m
 with that 

of front-month futures options. Because firms’ use of current prices as expected 

prices is consistent with a no-change forecast for the price of oil, I set the price 

and cost drift functions ( )   and ˆ ( )   to zero. The estimate of β from this model 

is 1.679, with a relatively large standard error of 0.572.
52

 The front month model 

also yields a weaker fit to the data than does the reference case model, with a log 

likelihood of -8662.5 rather than -8661.2. The increase in β, imprecision, and 

decreased fit with the front month model likely reflects the zero expected price 

drift assumption inherent in the use of front-month prices. A relatively high 

volatility state in this model is not associated with an expectation that prices will 

increase in the future, as was the case in the reference case model. In addition, the 

lack of mean reversion in the price forecast means that firms would not expect an 

increase in the oil price during periods such as 1998-1999 when the front-month 

price was low (and expected volatility was high). Because expectations of higher 
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prices in the future dampen the incentive to drill today, a higher estimate of β is 

required in order to offset the use of a no-change price forecast and fit the data. 

 

Alternative discount rate and drilling cost assumptions 

The estimates heretofore have been based on an assumed 12.5 percent 

nominal discount rate, taken from a 1995 survey by the Society of Petroleum 

Evaluation Engineers. Columns II and III of table 5 examine the use of alternative 

discount rates. A 14.5 percent discount rate yields an estimate of β of 1.189 while 

a 10.5 percent discount rate yields β = 0.973.
53

 Neither estimate is statistically 

distinct from one. These changes to the estimated β are in line with real options 

theory’s predictions. As the discount rate increases, firms value the future less, 

option value decreases, and firms become less responsive to changes in expected 

volatility. Thus, to fit the empirical volatility response, the volatility sensitivity 

parameter β must increase when the assumed discount rate increases. 

[Table 5 about here] 

Finally, columns IV and V of table 5 examine the estimates’ sensitivity to 

the assumption that rig costs constitute one-third of total drilling costs on average. 

Assuming a value of 20 percent or 50 percent does not substantially alter the 

estimate of β. 

 

VI. Conclusions 

The importance of irreversibility and uncertainty in investment decision-

making has been recognized since Marschak (1949) and Arrow (1968). 

Theoretical work has since derived optimal timing rules for irreversible 

investments and demonstrated that firms should defer projects when uncertainty is 

                                                 
53

 Under a hypothesis that firms believe volatility is mean reverting, the point estimates (standard 

errors) for β in columns II through V of table 5 are, in order, 1.281 (0.139), 1.027 (0.197), 1.194 

(0.189), and 1.194 (0.191). The log likelihoods are -8661.5, -8661.8, -8662.0, and -8660.9. 
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relatively high. These concepts have taken a prominent role in industrial 

organization and the macroeconomic modeling of aggregate investment. 

However, there has been a shortage of empirical evidence regarding the extent to 

which firms actually take option value into account when making irreversible 

investments. 

This paper tests the sensitivity of firms’ investment decisions to changes 

in the uncertainty of their economic environment by assembling a new, detailed 

dataset that combines information on well-level oil drilling with expected oil price 

volatility data from the NYMEX futures options market. I build and estimate a 

dynamic model of firms’ drilling investment timing problem, taking advantage of 

industry features that make a single-agent approach appropriate. I find not only 

that firms reduce their drilling activity when expected volatility rises but also that 

the magnitude of this reduction is consistent with the optimal response prescribed 

by theory. This result provides micro-empirical support for the frequent use of 

real options models in economic research. It is also consistent with the existence 

of a strong incentive for firms to behave optimally. I find that the cost of failing to 

respond to changes in volatility can be substantial, potentially exceeding 25 

percent of a drilling prospect’s value at in-sample oil price and volatility 

realizations. 

I also show that a forward-looking measure of expected price volatility 

derived from futures options is a more powerful determinant of drilling behavior 

than are backward-looking measures based on historic volatility. The relative 

strength of the implied volatility measure is consistent with the hypothesis that 

participants in the NYMEX commodity market and physical industry participants 

share common beliefs about future price uncertainty. This result thereby provides 

support for the use of data from financial markets as measures of firms’ 

expectations in applied work. It is also well-aligned with other research regarding 

the predictive power of option-based implied volatility and supports the intuition 
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that options prices incorporate up-to-date information about uncertainty shocks 

that cannot be conveyed by price histories alone. 
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Figure 1: Time series of monthly drilling activity, oil futures prices, and 

implied volatility from futures options prices 

 

Notes: Oil futures prices are 18-month ahead prices from the New York 

Mercantile Exchange (NYMEX). Implied volatility is calculated from 

futures options prices per the discussion in section I.D. Drilling activity 

corresponds only to infill oil wells drilled in sole-operated fields. 
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Figure 2: Average monthly production profile from a drilled well 

  
Notes: Production data are from the subset of observed drilled wells that 

are the only active producing well on their respective lease for the first 36 

months subsequent to drilling. This subset amounts to 160 of the observed 

1,150 drilled wells from 1993-2003. 
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Figure 3: NYMEX 18 month and front month oil futures prices 

 

 
Source: Monthly averages of NYMEX futures prices obtained from PriceData 
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Figure 4: Comparison of implied volatility to the one-year historic volatility 

of the future price and a GARCH(1,1) forecast

 
Notes: Implied volatility is calculated from futures options prices as 

described in section I.D. Historic volatility at any point in time is the 

standard deviation of the return on the 18-month futures price within a one 

year rolling window. The GARCH(1,1) model is estimated at each date 

using a 4-year rolling window of 18-month futures prices.  
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Figure 5: Drilling costs and oil futures prices 

 
Notes: Oil futures prices are 18-month ahead prices from the New York 

Mercantile Exchange (NYMEX). Drilling costs are those for an average 

well that requires 19.2 days of drilling time. These costs are based on daily 

rig rental rates obtained from RigData, as discussed in section I.E. 
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Figure 6: Illustration of the impact of the expected oil price and price 

volatility on the “trigger” expected production required so that 

drilling is optimal 

  

Notes: The relationships shown are for a well of average cost facing an 

average dayrate, so that the drilling cost is $386,501. The model used to 

generate these curves uses the state transition parameters estimated in 

section IV.A. 
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Figure 7: Predicted drilling from the estimated model vs. actual drilling 

 

 
Notes: Predicted drilling with no volatility response corresponds with the 

estimates of table 2, column I, in which the behavioral parameter β is 

restricted to zero. Predicted drilling with a volatility response refers to table 2, 

column II, in which β is estimated to be 1.118. 
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Figure 8: Comparison of the value of holding a drilling prospect to the 

profits from drilling 

  

Notes: The relationships shown are for a drilling prospect with an expected 

production of 17,000 bbl and an average depth, facing an average dayrate, so 

that the drilling cost is $386,501. With expected oil price volatilities of 0 

percent, 15 percent, and 30 percent, drilling is triggered at oil prices of $23, 

$29, and $36/bbl, respectively. The model used to generate these curves has a 

behavioral parameter β = 1 and uses the state transition parameters estimated 

in section IV.A of the text (with a random walk volatility forecast). Values 

shown are taken directly from the model’s value function. 
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Figure 9: Time series of monthly drilling activity split by small vs. large 
firms, with oil futures prices and implied volatility from futures 

options prices 

  

Notes: Drilling activity is broken into small vs. large firm at the median firm size 

(measured by total number of wells drilled) in the dataset. Oil futures prices are 

18-month ahead prices from the New York Mercantile Exchange (NYMEX). 

Implied volatility is calculated from futures options prices per the discussion in 

section I.D. Drilling activity corresponds only to infill oil wells drilled in sole-

operated fields. 
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Figure 10: Realized productivity vs. productivity triggers x* from the 

reference case model 

 
Notes: Production data are from the subset of observed drilled wells that are the 

only active producing well on their respective lease for the first 36 months 

subsequent to drilling (these are 160 of the observed 1,150 drilled wells from 

1993-2003). Realized productivity for each well is the estimated lifetime 

discounted production (in barrels) divided by the cost of drilling (in real 2003 US 

$). Dry holes are plotted as having a log(productivity) of -12. 

 

 

 

 

 

  

-14

-12

-10

-8

-6

-4

-2

0

Jan-93 Jan-95 Jan-97 Jan-99 Jan-01 Jan-03

L
o
g
 o

f 
re

a
li

ze
d

 w
el

l 
p

ro
d

u
ct

iv
it

y
 a

n
d

 

p
ro

d
u

ct
iv

it
y
 t

ri
g
g
er

 f
ro

m
 m

o
d

el

Realized Productivity Productivity Trigger

Break-even Productivity



 64  

 
 

  

I II III IV

Coefficient on covariate:

Basic 

exponential 

hazard

Include 

drilling cost

Prospect-

specific 

heterogeneity

Drilling cost 

and time 

trend

      1.041
***

      1.056
***

      1.056
***

      1.055
***

(0.016) (0.021) (0.021) (0.021)

      0.969
***

      0.976
**

      0.976
**

      0.967
**

(0.008) (0.010) (0.010) (0.013)

- 0.754 0.754 0.716

- (0.175) (0.175) (0.170)

- - - 1.019

- - - (0.021)

Log likelihood -3979.5 -3978.5 -3978.5 -3977.9

Notes : Reported coefficients are hazard ratios: the multiplicative effect on the hazard rate of a one unit increase in the 

covariate. All estimates use prices of futures and options that are 18 months from maturity. All covariates are lagged 

by three months. Standard errors are estimated using a sandwich estimator that allows for correlation of the 

likelihood scores across wells within the same field, thereby accounting for spatial and serial correlation. *,**,*** 

indicate significance at the 10 percent, 5 percent, and 1 percent level for a two-tailed test that the coefficient is 

different from one.

Unobserved heterogeneity (inverse 

Gaussian distribution)
N N NY

Table 1: Hazard model results for the probability of drilling

Oil futures price ($/bbl)

Implied volatility of future price 

(percent)

Drilling Cost ($100,000)

Linear time trend (in years)
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I II III IV V

Parameter:

Beta restricted 

to zero

Reference 

case, random 

walk volatility 

forecast

Reference 

case, mean 

reverting 

volatility 

Small firm 

subsample

Large firm 

subsample

- 1.118 1.191 1.136 1.085

- (0.141) (0.188) (0.127) (0.212)

-0.431 -12.045 -12.616 -18.991 -6.998

(2.668) (7.993) (8.183) (15.025) (9.068)

3.023 6.961 7.212 9.268 5.282

(0.887) (2.664) (2.733) (4.991) (3.039)

Log likelihood -8670.5 -8661.2 -8661.3 -4350.9 -4309.7

Table 2: Results from estimation of the dynamic model

β (sensitivity to volatility)

μ (mean of log(xit))

ζ (std. dev. of log(xit))

Notes : All estimates use prices of futures and options that are 18 months from maturity. x it  is expressed as expected oil production 

(in bbl) divided by the cost of drilling (in $100,000) at the average sample dayrate. Drilling data are matched to drilling likelihoods 

with a three month lag. Columns IV and V assume that firms have a random walk forecast for future volatility. Standard errors are 

estimated using a sandwich estimator that allows for correlation of the likelihood scores across wells within the same field, thereby 

accounting for spatial and serial correlation. Standard errors also account for the sampling error in the estimated function for the 

expected drift of future oil prices.
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I II III IV V

Parameter:

Reference case 

model Time trend

July 1998 

dummy

July 1998 

dummy, 

alternative local 

maximum

Model includes 

production data

1.118 1.117 1.137 0.453 0.923

(0.141) (0.138) (0.127) (0.280) (0.169)

-12.045 -11.922 -20.913 -3.113 -3.709

(7.993) (9.107) (15.667) (4.160) (4.428)

6.961 6.920 9.959 3.964 4.166

(2.664) (3.065) (5.261) (1.400) (1.487)

- 0.001 - - -

- (0.038) - - -

- - -0.433 -0.250 -

- - (0.501) (0.169) -

Log likelihood -8661.2 -8661.2 -8659.5 -8659.9 -9457.9

Notes : All estimates use prices of futures and options that are 18 months from maturity. x it  is expressed as expected oil production (in 

bbl) divided by the cost of drilling (in $100,000) at the average sample dayrate. Drilling data are matched to drilling likelihoods with a 

three month lag. All estimates assume that firms have a random walk forecast for future volatility. Column V involves estimates of 

parameters not shown; full estimates are given in appendix 3. Standard errors are estimated using a sandwich estimator that allows for 

correlation of the likelihood scores across wells within the same field, thereby accounting for spatial and serial correlation. Standard errors 

also account for the sampling error in the estimated function for the expected drift of future oil prices.

Table 3: Alternative specifications: sources of identification

β (sensitivity to volatility)

μ (mean of log(xit))

ζ (std. dev. of log(xit))

Time trend (years)

Dummy for date ≥ July 

1998
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I II III IV

Parameter:

Reference case 

model (table 2, 

column II)

Historic volatility 

of futures prices, 

one year window

GARCH 

volatility

Front month 

futures and 

implied volatility

1.118 0.348 0.587 1.679

(0.141) (0.338) (0.194) (0.572)

-12.045 -0.331 -2.481 -3.462

(7.993) (2.587) (3.552) (2.972)

6.961 2.996 3.745 4.146

(2.664) (0.860) (1.189) (1.000)

Log likelihood -8661.2 -8670.4 -8666.0 -8662.5

β (sensitivity to volatility)

μ (mean of log(xit))

ζ (std. dev. of log(xit))

Table 4: Alternative specifications of price and volatility beliefs

Notes : x it  as expressed in expected oil production (in bbl) divided by the cost of drilling (in $100,000) at the average 

sample dayrate. Drilling data are matched to drilling likelihoods with a three month lag. All estimates assume that firms 

have a random walk forecast for future volatility. Standard errors are estimated using a sandwich estimator that allows for 

correlation of the likelihood scores across wells within the same field, thereby accounting for spatial and serial correlation. 

Standard errors also account for the sampling error in the estimated function for the expected drift of future oil prices.
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I II III IV V

Parameter:

Reference case 

model (table 2, 

column II)

14.5 percent 

nominal discount 

rate

10.5 percent 

nominal discount 

rate

Rig costs 

average 20 

percent of total 

drilling cost

Rig costs 

average 50 

percent of total 

drilling cost

1.118 1.189 0.973 1.122 1.127

(0.141) (0.176) (0.174) (0.143) (0.133)

-12.045 -10.164 -11.470 -12.871 -13.163

(7.993) (7.599) (8.045) (8.545) (7.672)

6.961 6.325 6.776 7.237 7.336

(2.664) (2.538) (2.684) (2.847) (2.555)

Log likelihood -8661.2 -8661.5 -8661.3 -8661.9 -8661.0

Table 5: Alternative specifications: discount rates and drilling costs

β (sensitivity to volatility)

μ (mean of log(xit))

ζ (std. dev. of log(xit))

Notes : All estimates use prices of futures and options that are 18 months from maturity. x it  is expressed as expected oil production (in bbl) 

divided by the cost of drilling (in $100,000) at the average sample dayrate. Drilling data are matched to drilling likelihoods with a three month lag. 

All estimates assume that firms have a random walk forecast for future volatility. Standard errors are estimated using a sandwich estimator that 

allows for correlation of the likelihood scores across wells within the same field, thereby accounting for spatial and serial correlation. Standard 

errors also account for the sampling error in the estimated function for the expected drift of future oil prices.



 A1  

ONLINE APPENDIX 

“The Effect of Uncertainty on Investment: Evidence from Texas Oil Drilling” 

by Ryan Kellogg 

 

 

Appendix 1: Construction of the time series of implied futures price volatility 

This appendix describes how I construct a time series of the implied volatility of 18-

month NYMEX oil futures contracts. As discussed in the main text, I cannot simply use the 

Black (1976) formula directly because it assumes that the term structure of volatility (the 

function by which the volatility of the future price of oil varies as time to maturity increases) is 

constant. My strategy for addressing this issue proceeds in three steps. First, I use the realized 

volatility of futures prices to estimate the average term structure of volatility. Second, I use 

liquidly traded short-term futures options to generate a time series of the implied volatility of 

one-month futures option contracts. Because a one month time horizon is short, this time series is 

equivalent to the time series of the implied volatility of one-month futures price contracts. 

Finally, I combine the one-month futures price volatilities with the estimated term structure to 

generate the desired time series of the implied volatility of 18-month futures price contracts.1 

The remainder of this appendix discusses these three steps in turn. 

Let Ft,τ denote the price of a NYMEX futures contract traded at date t with time to 

maturity τ measured in months.2 For each t and τ, I calculate the realized volatility at t of the τ-

month futures contract as the standard deviation of ln(Fs,τ / Fs-1,τ) for all dates s within the 6 

months prior and subsequent to t.3 Let this volatility be denoted by σt,τ. I then estimate the term 

structure of futures price volatility by regressing the log of σt,τ on fixed effects for each τ and t:4  

 ln σt,τ = ητ + δt + ετ,t (A1.1) 

                                                 
1 An alternative procedure to that used here would use the term structure of the implied volatility of futures options 
directly to derive the implied volatility of 18-month futures prices. This approach would use the fact that the 
volatility of a τ-month futures price is equal to the volatility of a τ-month futures option plus τ times the derivative of 
the futures option term structure (with respect to τ) at τ. The use of the derivative implies that this approach requires 
a very precise estimate of the term structure of futures options’ implied volatility. Thin markets for futures options 
beyond 6 months render this procedure impractical. For example, 18-month futures options are traded, on average, 
only 18 days each year from 1993-2003. 
2 Time to maturity in months is equal to the time to maturity in days divided by 365.25, multiplied by 12, and 
rounded to the nearest whole number. 
3 Observations Fs,τ for which date s - 1 is missing (for example, if s - 1 is a Sunday) are excluded. 
4 I use the log of σt,τ as the dependent variable rather than the level because the levels regression does not yield an 
estimated term structure that is stable over time. In levels, the term structure is has a steeper slope during 1999-2003 
than in the earlier part of the data. 
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The fixed effects ητ represent the estimated term structure while the δt control for the 

level of volatility on each date t. Given estimates of these fixed effects, the predicted volatility of 

a τ-month futures price on date t is given by At·exp(ητ), where At = exp(δt + v2 / 2) and v2 is the 

variance of the estimated residuals. Thus, for a fixed trade date t, varying τ will trace out the term 

structure of volatility. Figure A2 verifies that the term structure of volatility is stable over the 

sample by plotting two estimates of the term structure: one using data from 1999-2003 and 

another using data prior to 1999. The constant term A for each plotted estimate is set so that the 

one-month future price volatility is 31%, approximately equal to the average one-month 

volatility over 1993-2003. The plots overlay each other closely, indicating that the term structure 

of volatility is stable over the sample despite the substantial increase in the overall level of 

volatility after 1999.  

Given the estimated term structure (the ητ), all that is needed to compute expected 18-

month futures price volatilities is a time-series of short-run (one month) expected futures price 

volatilities. I derive this time series from the implied volatility of short-term futures options with 

a time to maturity between 60 and 180 days. The implied volatility of options with a shorter time 

to maturity are noisy, potentially reflecting low option values and integer problems (options 

prices must be in whole cents), while options with a longer time to maturity are thinly traded.  

For each trade date and time to maturity within the 60 to 180 day window, I use the Black 

(1976) model to find the implied volatilities of the call and put options that are nearest to at-the-

money.5 I then estimate the implied volatility term structure by regressing the log of each 

option’s implied volatility on its time to maturity τ (in days), a call/put dummy, and trade date 

fixed effects δt.
6 I then use this estimated term structure (the estimated coefficient on τ) to 

extrapolate implied volatility back to a 30 day maturity.  

As a validation check on the this procedure, I compare the average, over 1993-2003, of 

the estimated implied volatilities of 30-day futures options to the average realized volatility of 

one-month futures prices over the same timeframe. These two averages should be approximately 

equal given the short one month time to maturity. The former series has an average volatility of 

                                                 
5 The Black (1976) model assumes that the options are European rather than American and that volatility is not 
stochastic. Neither of these assumptions holds here; however, their effects are likely to be minor and they save 
considerable computational complexity. Hilliard and Reis (1998) demonstrate that the American premium is no 
more than 2% of the European option price for volatilities similar to those considered here. Stochastic volatility acts 
in the opposite direction, causing the Black (1976) model to slightly over-price at-the-money options (this effect is 
particularly small for the relatively short maturities considered here); see Hull and White (1987), Wiggins (1987), 
and Poon and Granger (2003). The argument that these assumptions are of minor effect is supported by the close 
agreement between the average realized and average implied volatility over the 1993-2003 sample. 
6 Inspection of the residuals indicates that a linear term structure specification is appropriate. Moreover, when a 
squared time to maturity term is added, it is not statistically significant (p-value = 0.114). 
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30.83% while the average of the latter is 31.07%. The closeness of these two numbers (derived 

from two completely different data sets) supports the argument that implied volatilities from one-

month futures options can be used as implied volatilities of one-month futures prices. 

Finally, I convert the time series of implied volatilities of one-month futures prices to 

implied volatilities of 18-month futures prices using the estimated term structure of futures price 

volatility (the ητ). This conversion amounts to multiplying the one-month volatility at each trade 

date t by exp(η18 - η1). 

 

Appendix 2: Numerical solution and estimation methods 

A2.1 Value function iteration 

I solve the value function (12) on a grid of points in (P,D,σ,x) space (in logs) using 

standard value function iteration. An important factor in defining the grid is that, while the price, 

dayrate, and volatility states that are realized in the data are bounded, the stochastic processes for 

these variables (equations 4, 5 and 10) imply that agents place nonzero probabilities on 

realizations outside of these bounds. Thus, the value function must be solved for states extending 

beyond the boundaries of the data. The state space I use extends from one-fifth of the lowest 

realized price and dayrate to five times the highest price and dayrate, and from one-half the 

lowest realized volatility to twice the highest volatility. With this state space, marginal 

reductions or extensions in size do not substantially affect the estimated parameters or the value 

function within the range of realized observations. 

I found that a relatively dense grid was required to accurately capture the effects of 

stochastic volatility. The grid I use has 1,875,000 points: 50 price states by 50 dayrate states by 

15 volatility states by 50 productivity states. Starting from this density, the estimated results are 

insensitive to increases or decreases in the number of grid points.  

In the full estimation routine, the initial value function used for each guess of parameters 

is the value function from the previous guess. For the first parameter guess, the initial value 

function is zero in all states. The convergence criterion is a tolerance of 10-6 on the sup norm of 

the value function (the value function used in the computations is in units of $386,501, the 

average drilling cost at the average dayrate). Increasing the tolerance to 10-7 has essentially no 

affect on the parameter estimates or value function. 

With the value function solved, I can then find, for any given P, D, and σ, the critical 

productivity x* such that drilling is optimal iff *
ix x . Because the P, D, and σ realizations do 

not coincide with the grid states used in the model, I use linear interpolation to find *x . At each 
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xi grid point, I calculate the value function at the realized P, D, and σ by linearly interpolating the 

value function between the states immediately above and below the P, D, and σ. I then find the 

smallest xi grid point such that the value of waiting exceeds the realized profits from drilling 

immediately and the largest xi such that it is optimal to drill immediately (these two values of xi 

will be adjacent grid points). Interpolation gives *x  as the productivity level for which the firm is 

indifferent: the value of waiting equals the value of drilling immediately. As described in the 

text, the realized time series of P, D, and σ can then be combined with a parameterized 

distribution on the xit to yield the probability that a given prospect will be drilled each period. 

In most of the estimated models, there is no initial conditions problem because the 

productivity shocks xit are modeled as iid. An initial conditions problem is present, however, in 

the specification allowing for time-invariant prospect heterogeneity (though the specification 

ultimately finds no evidence of such heterogeneity). I address this issue by extending the 

simulation back to January 1992, so that by 1993, when drilling likelihoods start to be taken, an 

equilibrium is approximately reached. This extension requires the interpolation of missing rig 

dayrate data for the fourth quarter of 1992.   

 

A2.2 Estimation 

I search for the parameters β, μ, and log ζ that maximize the log-likelihood function (13) 

via a gradient-based search that uses the BFGS method for computing the Hessian at each step (I 

take the logarithm of ζ to allow for negative values in the parameter search). I accelerate the 

search by conducting it in two stages. First, holding β fixed, I search for the μ and log ζ that 

maximize the likelihood. This stage is fast because changing μ and ζ does not require re-solving 

the model. The outer-most loop then searches for β. The stopping criterion is a tolerance on the 

likelihood function (scaled down by a factor of 10,000) of 10-10 for the μ and ζ loop and 10-8 for 

the β loop. 

To compute the standard errors of the parameter estimates, I obtain the likelihood score 

of each observation (drilling prospect - month) numerically. With respect to each parameter θk, I 

calculate the derivative of the log likelihood for observation j as 
( ) ( )

2
j k k j k k

k

θ ε θ ε

ε

  l l
. For the 

parameters β and μ, I use a value for εk of 0.001, and for log ζ I use a value of 0.0001 because the 

likelihood function is particularly concave in this parameter. The standard errors are robust to 

values of εk that are an order of magnitude larger or smaller. 
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I adjust the standard errors to account for the fact that the parameters of the expected 

price drift function (11) are estimated in a first stage.7 Denoting the first-stage parameters (κp0, 

κp1, and κp2) and log-likelihood function by θ1 and L1, and denoting the second-stage parameters 

(β, μ, and ζ) and log-likelihood function by θ2 and L2, I apply the procedure of Murphy and Topel 

(1985) using equation (A2.1), 

 
1 1 ' 1 1

2 2 3 1 3 2R R R R R R        (A2.1)  

where Σ denotes the corrected variance-covariance matrix for θ2, and 
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  (A2.2)  

R1 is simply the inverse of the variance-covariance matrix from the least-squares estimate 

of the price drift function (11), which I compute using standard errors clustered on month-of-

sample.8 R2 is the inverse of the unadjusted (and non-clustered) second-stage variance-

covariance matrix. Calculation of R3 requires numerical derivatives of the second-stage 

likelihood function with respect to the first-stage parameters. I calculate these derivatives in the 

same way that I calculate those with respect to the second stage parameters, as discussed above. 

The perturbations I use for κp0, κp1, and κp2 are 10-5, 10-6, and 10-3, respectively. 

For the specifications that yield estimates of β near one, the above procedure roughly 

increases the estimated standard errors by a factor of 3, a magnitude similar to that found in 

several examples in Murphy and Topel (1985). The adjustment is not substantial for other 

specifications, however, as their unadjusted standard errors are already large. 
  

                                                 
7 The volatility of volatility (γ), the ratio of dayrate volatility to oil price volatility (α), and the correlation between 
dayrate and price shocks (ρ) are also estimated in a first stage. However, I found that these parameters contributed 
only negligibly to the standard errors of the main parameter estimates in the reference case model. To reduce 
computational burden, the results presented in the paper therefore ignore these parameters when computing Murphy 
and Topel two-step standard errors. In the mean-reverting volatility beliefs specifications, I also account for 
sampling error in the estimation of the parameters governing the volatility mean reversion function. 
8 Clustering on year rather than month-of-sample does not substantially affect the estimated standard errors. 



 A6  

Appendix 3: Estimation including productivity realizations 

This appendix provides details of the process by which I use production data from the 

subset of wells for which production is observable to estimate an expanded version of the 

structural model. I first discuss how I transform the raw production data into estimates of each 

well’s total discounted lifetime productivity. I then discuss the construction of an augmented 

likelihood function that incorporates these productivity data. 

 

A3.1 Calculating discounted lifetime productivity 

For 160 of the 1,150 wells in the sample, I observe the well’s monthly production for the 

first three years of the well’s life. The dynamic model presented in the main text, however, is 

based on the productivity of each well, defined as its discounted total lifetime production divided 

by its drilling cost at the average rig dayrate. To transform the three years of production data for 

each well into an estimate of discounted total lifetime production, I employ a decline curve 

analysis. The simplest possible approach would be to fit a hyperbolic curve to the average 

production decline data shown in figure 2 in the paper and then use this curve to extrapolate 

production for future years of each well’s life. However, one strong feature of the production 

data is that decline rates are less steep for wells that are relatively productive. Therefore, I allow 

the parameters governing the hyperbolic decline to vary with the observed three-year production 

volumes. 

Specifically, denoting the production from well i in month t as qit, and denoting the log of 

well i's total production in its first three years as Qi3, I estimate the hyperbolic decline equation 

(A3.1) on the pooled monthly data from all 160 wells: 

 
0 1 3(

0 1 3
3

)( )( )1 ii
i

i

Qtq
Q

Q
t           (A3.1)  

The parameters α1 and γ1 allow the estimated decline curve to steepen or flatten for more 

productive wells.9 I estimate that α0 = 0.337, α1 = -0.0269, β = 0.144 (t is measured in months 

since drilling), γ0 = 3.97, and γ1 = -0.319. The negative estimates for α1 and γ1 are consistent with 

a shallower decline rate for more productive wells.10 

                                                 
9 While the β term could in principle also be interacted with total three-year production, it becomes very difficult for 
the estimator to converge when this interaction is included. Intuitively, allowing for this additional flexibility is 
unnecessary, as providing flexibility in the decline curve intercept (through α1) and “slope” (through γ1) is sufficient. 
10 As an alternative approach, I have also attempted to estimate decline curves well-by-well. However, the estimates 
are generally too noisy to be useful, especially as some wells are actually estimated to have increasing production 
over their first three years, which makes it impossible to project an eventual decline. 



 A7  

For each of the 160 wells, I use the estimate of equation (A3.1) to extrapolate future 

production, and I then apply the discount factor used in the model (see section IV.A of the paper) 

to obtain the well’s discounted total lifetime production. Finally, I divide this number by the 

well’s estimated drilling cost at the average dayrate (this cost depends on the number of days 

needed to drill the well, as described section I.E in the paper) to obtain its realized productivity 

(in barrels per $ of drilling cost). These realized productivity data are plotted in figure 10 in the 

main text. 

 

A3.2 Augmenting the likelihood function 

With the inclusion of the realized productivity data, the likelihood function must now 

incorporate the probability of each productivity realization (which will depend on x* each period 

and on the variance of productivity realizations about their expectation) and the probability that 

production is observable for each drilled well (which will depend on the well’s productivity). 

The resulting likelihood function involves three pieces, which I now describe in turn. 

The first piece of the likelihood for each drilled well is that given by equation (13) in the 

text:  the probability that drilling would occur in the month the well was actually drilled (or not 

occur at all during the sample in the case of an undrilled prospect). This part of the likelihood 

does not change, and for undrilled prospects this is the only part of the likelihood. 

The second piece of the likelihood applies only to wells for which productivity is 

observed (160 of the 1,150 wells). Some notation is required. Let Yit denote the realized 

productivity of well i drilled in month t, and let yit denote its log. Let Zit denote the expected 

productivity of well i drilled in month t, and let zit denote its log. This expectation is the firm’s 

expectation of the well’s productivity after it has made the decision to drill but before drilling is 

completed. Thus, zit has a normal distribution, with mean μ and standard deviation ζ (the two 

parameters that govern the distribution of xit as discussed in section IV.B in the text), that is left-

truncated at the log of the productivity trigger at time t. In a slight abuse of notation, let xt* now 

denote the logged productivity trigger. Finally, let *( )dry tP x  denote the probability of a dry hole as 

a probit function of xt*. Specifically, *( )dry tP x  is given by equation (A3.2) below, in which τ0 and 

τ1 are parameters to be estimated. 

 
1

*
* 0( ) 1 t

dry t

x
P x




 
  

 
  (A3.2)  

Given an expected productivity zit, yit will be -∞ with probability *( )dry tP x  and will 

otherwise be normally distributed about zit with variance 2

p , following (A3.3): 
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  (A3.3)  

It is the variance term 2

p  that allows for noise in the production realizations so that they can be 

rationalized by the model. Also note that the distribution of yit is designed so that E[Yit] = Zit. 

Let f(yit|zit) denote the distribution of yit conditional on zit and on the well not being dry 

(i.e., f(yit|zit) is the second part of (A3.3)). Let g(zit|xt*) denote the truncated normal distribution 

of zit, conditional on xt*. The contribution of production realization yit to the likelihood is then: 
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dry it
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x
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P f y z g z x dz y




  
   

The third and final piece of the likelihood contribution from each drilled well is the 

probability that production from the well is observable in the data. There are two components of 

this probability, which I denote by Pobs. The first is the probability that the well can be matched 

to a lease name in the production database. I take this probability, which I denote by Pmatch, to be 

exogenous to the model and fix it to equal the observed match rate in the data, 527/1150. The 

second component addresses selection. The probability of observing a drilled well’s production 

should increase if its realized productivity is low relative to expectations, and it should also 

increase if xt* is high, since fewer wells are drilled when the trigger productivity is high (and 

trigger productivities are serially correlated). I therefore specify Pobs per equation (A3.4) below, 

in which λ0, λ1, and λ2 are parameters to be estimated: 
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obs it t match it t match

y x x
P y x P s y x P

 
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  (A3.4) 

   

Note that equation (A3.4) implies that the probability of observing a dry hole, for which 

yit = -∞, is equal to Pmatch. Thus, for all wells for which production is observed, the final 

component of their likelihood is given by *( , )obs it tP y x . 

For the drilled wells for which I do not observe production, I must compute the 

probability that production is unobserved, conditional on the trigger productivity xt* at the time 
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of drilling. This computation requires a double integral over realized productivity conditional on 

expected productivity and over expected productivity conditional on xt*. The probability that 

production is unobserved is therefore given by equation (A3.5): 

 
*

* * * * *( ) 1 ( ) (1 ( )) ( , ) ( | ) ( | )
t

unobs t match dry t dry t it t it it

x

it it t itP x P P x P x s y x f y z dy g z x dz
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        

    (A3.5)  

For all wells for which production is unobserved, the final component of their likelihood 

is given by *( )unobs tP x . This completes the likelihood. 

Estimation involves six parameters not present in the reference case model: the 

parameters τ0 and τ1 that dictate how the dry hole probability varies with xt*, the parameter σp 

that dictates the variance of the realized production data, and the parameters λ0, λ1, and λ2 that 

dictate which productivity observations are likely to be observable. The estimates of these 

parameters, which correspond to the estimates presented in column V of table 3 in the text, are: 

τ0: -9.257 (5.492) 

τ1:  2.997 (5.520) 

σp:  1.765 (0.068) 

λ0:  1.712 (5.492) 

λ1:  5.847 (3.472) 

λ2: -2.061 (2.560) 

The estimates of τ0 and τ1 are imprecise but consistent with a modest decrease in the 

probability of a dry hole as xt* increases. At the sample average xt* of -2.629, the estimates 

imply that the probability of a dry hole is 1.4%. For comparison, I observe 7 dry holes out of the 

160 observed wells and 1,150 total wells. The σp parameter is large and precisely estimated, 

consistent with the noise in realized productivity plotted in figure 10 in the paper. The λ0, λ1, and 

λ2 estimates are consistent with the probability of observing production varying negatively with 

realized productivity and positively with xt*. The parameters imply that a one standard deviation 

increase in realized productivity from the sample mean xt* of -2.629 to -2.629 + σp reduces the 

probability of observing the well’s production from 12.1% to 8.0%. For reference, I observe 

production for 13.9% (=160/1150) of the drilled wells. Thus, given the parameter estimates, 

observed productivity realizations must on average be lower than the sample mean xt* in order to 

attain the 13.9% observation rate. 
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Figure A1: Infill drilling in sole operated vs. all fields 

 

 

       Figure A2: Estimated term structures of futures price volatility 

  
Notes: The figure displays two term structures, one estimated using data from before 
1999, the other using data from 1999-2003. Volatility of a one-month future is set to 
31.0% for both term structures. 
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