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I. Introduction 

The economic consequences of learning-by-doing, the hypothesis that unit costs decrease 

with cumulative production, are well-known. In industrial organization, learning-by-doing can 

rationalize pricing below short-run marginal cost and lead to increases in industry concentration 

through the emergence of a low-cost dominant firm (Spence 1981; Cabral and Riordan 1994; 

Benkard 2004; Besanko et al. 2010). In macroeconomics, on-the-job learning and knowledge 

spillovers are widely believed to play important roles in driving endogenous economic growth 

(Arrow 1962; Lucas 1988; Stokey 1988; Parente 1994; Jovanovic and Nyarko 1996). This paper 

uses a new dataset to document a form of learning that has thus far received little attention: 

relationship-specific learning. Learning-by-doing can be relationship-specific when the 

productivity improvements associated with the accumulation of experience are specific to not 

just an individual firm but to pairs of firms working together in a contracting relationship. For 

example, a contract accounting firm may improve the speed with which it prepares a client’s 

quarterly reports as its employees become familiar with the client’s personnel and accounts. 

Relationship-specific learning is consequential because it implies that relationship 

stability is important to productivity. When two firms accumulate experience working together, 

relationship-specific intellectual capital is created that cannot be appropriated to pairings with 

other firms. If the relationship is broken, this capital is destroyed and productivity decreases. 

Relationship-specific learning therefore gives firms an incentive to work with contractors with 

which they have substantial experience rather than those with which they have worked relatively 

little. This learning may also be a mechanism behind recent documentation of forgetting effects. 

Argote, Beckman, and Epple (1990), Benkard (2000), and Thompson (2007) find evidence that a 

firm’s recent production experience has a stronger impact on productivity than does older 

experience. Some of this experience depreciation may reflect an unobserved change in the firm’s 

contracting relationships and a commensurate loss of relationship-specific capital. Finally, like 

forgetting, relationship-specific learning may be important at the macroeconomic level: 

recessions that disrupt production and fracture relationships may result in a productivity decrease 

that persists beyond the rebound in output during the recovery. 

Are relationship-specific learning effects sufficiently large that they plausibly play a role 

in firms’ contracting or are a determinant of economic productivity? The literature is largely 

silent on this question. This paper therefore empirically evaluates the importance of relationship-

specific learning using a new dataset from the U.S. onshore oil and gas drilling industry. I ask 

three questions. First, when production requires coordinated inputs from multiple firms, to what 
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extent is productivity a function of not just each firm’s individual experience but also the firms’ 

joint experience? Second, do firms prefer to maintain long-term relationships rather than 

regularly switch contracting partners, consistent with a desire to maximize relationship-specific 

learning’s productivity benefits? Finally, through what mechanisms does relationship-specific 

learning operate? 

The U.S. onshore drilling industry is well-suited to this investigation for several reasons. 

First, drilling requires inputs from two types of firms: production companies (“producers”) and 

drilling companies. Producers—for example, ExxonMobil and Chevron—are responsible for the 

technical design and planning of wells to be drilled but do not actually drill wells themselves. 

Drilling is instead outsourced to drilling companies that own and staff drilling rigs. Second, 

learning is an important source of productivity growth in this industry. Drilling cost-efficiency 

requires the technical optimization of drilling procedures as well as teamwork between producer 

personnel and the rig crew—skills that may be acquired through experience. Third, I have 

collected excellent data on both drilling contracting and performance, covering nearly 20,000 

wells drilled over 1991-2005, with which I can track drilling efficiency—measured as the 

number of days required to drill each well—for producers, rigs, and producer-rig pairs.  

This paper’s primary finding is that not only do producers and rigs learn from their own 

experience, they also benefit from relationship-specific learning. Specifically, a rig that works 

with only one producer will, on average, benefit from productivity improvements more than 

twice as large as those of a rig that frequently changes producers. Because I observe multiple 

wells drilled per producer-rig pair, I am able to use producer-rig fixed effects to distinguish this 

learning effect from any ex ante match specificities that might cause certain firm pairs to drill 

more effectively and more frequently than others.  

For the average well in my dataset, I estimate that relationship-specific learning reduces 

drilling times by 4.9% on average, yielding cost savings of about $12,400 per well. These 

savings give firms an incentive to maintain long-term relationships. Accordingly, the data 

indicate that producers prefer to work with rigs which they have accumulated considerable 

experience rather than those with which they have worked little. I find that this contracting 

pattern is difficult to explain with switching costs or ex ante match specificities alone. 

Finally, I examine the mechanism behind the observed relationship-specific learning. 

While these results are empirically weaker than the primary finding, the learning appears to be 

driven primarily by the accumulation of personal interactions between the firms’ personnel rather 

than rigs’ accumulation of geologic or technical knowledge specific to the wells they drill for 

their producers. Consistent with this result, I find that firms tend to choose a contractual form 
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that increases cross-firm personal contacts when they anticipate working together for an 

extended period of time—a situation in which maximizing the rate of relationship-specific 

learning is particularly important. 

While this paper focuses on the oil and gas drilling industry, it seems likely that the 

prevalence of relationship-specific learning extends beyond the oilpatch. Large construction and 

manufacturing projects, for example, regularly involve multiple contractors and sub-contractors 

working under a lead, general contractor. In addition, while I focus on relationship-specific 

learning as a phenomenon that occurs between firms, learning specificities are likely to be 

important within firms as well: workers may develop skills that are specific to their particular 

employer. Becker (1964), Prendergast (1993), and Gibbons and Waldman (2004, 2006) discuss 

the implications of job-specific learning for equilibrium wage and promotion paths, explaining 

why, for example, wages increase with age at a decreasing rate.1 These theories could in 

principle be translated to the pricing of service contracts between firms when learning is 

relationship-specific. 

The remainder of the paper is organized as follows: Section II provides background 

information on the oil and gas drilling industry, and Section III discusses industry mechanisms 

for learning-by-doing. Section IV describes the data used in this study. Section V presents a 

model of learning-by-doing and discusses the empirical strategy. Section VI provides the 

primary estimation results. Section VII discusses relationship persistence between producers and 

rigs, and Section VIII examines the mechanisms behind relationship-specific learning. Section 

IX concludes. 

 

II. Institutional Background 

II.A. Production Companies and the Drilling Problem 

Oil and gas reserves are found in geologic formations known as fields that lie beneath the 

earth’s surface. The mission of a production company is to extract these reserves for processing 

and sale. To operate in any given field, a producer must first obtain leases from the holders of 

that field’s mineral rights. A lease typically grants a right to operate in only a small part of a 

field, and most fields are operated by several distinct producers holding different leases.2 

 
1 For an example and survey of the empirical literature on wage dynamics, see Poletaev and Robinson (2008). 
2 Leaseholding producers within a field may sometimes “unitize” their holdings by pooling them together, agreeing 
on ownership shares in the pooled unit, and naming one of the producers as the unit operator. See Wiggins and 
Libecap (1985) for a discussion of the economics of unitization. 
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A field’s reserves are typically buried under many layers of rock that do not contain oil or 

gas. The objective of drilling a well is to penetrate these overlying rock layers to reach the oil 

and gas in the field. Once a well is drilled to its target depth, the drilling rig is no longer needed 

and the well, if successful, will produce oil and/or gas for a period of several years. 

There is significant variation in geology across fields, particularly with regard to the 

depth at which they are buried. Some fields are as shallow as 3,000 feet deep and can be drilled 

in a few days, while others are more than 20,000 feet deep and can require several months of 

drilling. The types of rock that must be drilled through also vary considerably: the layers of 

sandstone, shale, and limestone that may be encountered in one area will generally not be the 

same as those found elsewhere. 

Wells fall into two broad categories. “Wildcats” are those that are drilled into a 

previously unexplored field, and their goal is to assess whether the field will actually be 

productive. “Development” wells, on the other hand, are drilled into fields in which previously 

drilled wells already exist, and their goal is to enhance field production. Most wells are vertical 

holes; however, horizontal and directional wells are sometimes drilled when surface features 

make a vertical well impossible or when doing so will improve the well’s oil and gas production. 

Even though producers do not physically drill their own wells, they do design wells and 

write drilling procedures. This arrangement is a response to the fact that the optimal drilling 

program for any well is a function of the specific geologic features of the field in which it is 

drilled. Producers typically have more geologic information than do drillers, due to their 

knowledge from seismic imaging and previously drilled wells, and are therefore better placed to 

make these engineering decisions.3 

II.B. Rigs and Contracting 

The actual drilling of wells is conducted by drilling companies, which own drilling rigs 

and employ drilling crews. The primary features of a rig are a tall derrick, which allows pipe to 

be drawn in and out of the well, and a motor that spins the drill pipe and drill bit during drilling. 

The size of this equipment determines a rig’s “depth rating,” the depth to which the rig is 

recommended to drill. Apart from this depth rating, rigs generally do not have field or producer-

specific characteristics. The exceptions to this rule are recently-built or refurbished rigs carrying 

equipment that eases the drilling of horizontal and directional wells. 

 
3 Very small producers, which drill infrequently and may not have engineering resources, sometimes outsource the 
planning and design function to the driller.  
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Rigs are mobile and can easily change locations within a field; however, moves of more 

than fifty miles typically require several days and result in the charging of fees to the producer 

requesting the move. When under contract, rigs operate 24 hours per day and seven days per 

week, rotating crews in three eight-hour shifts. My interviews with industry participants have 

indicated that, while the average employment tenure of a rig crewman is approximately one year, 

the rig foreman usually stays with a rig for much longer, and tenures longer than five years are 

not uncommon. 

It is natural to ask why this industry is vertically separated, particularly given the 

relationship-specific learning effects identified in this paper. The answer lies in the spatial and 

temporal variation with which producers drill wells. The drilling activity of any producer 

fluctuates with oil production outcomes from recently drilled wells and the firm’s success in 

finding new fields. Successful wildcats and development wells often lead to additional drilling, 

while “dry” unproductive holes do not. The mobility and non-specificity of rigs allow them to 

smooth these fluctuations in drilling requirements across producers. This smoothing minimizes 

overall rig capacity requirements, as well as rig transportation and mobilization costs, without 

requiring the producers to contract directly with each other. 

Producers typically contract with rigs for the drilling of one well at a time since they are 

generally reluctant to commit to a long-term contract when the total number of wells they will 

drill is not known with certainty and contingent on oil production from the first several wells 

drilled. For example, if a drilled well turns out to be a dry hole, the producer will usually not 

want to follow-up with additional drilling in the field. Long-term relationships are therefore 

generally maintained through repeat contracting rather than formal long-term contracts.4 To the 

extent that relationship-specific learning is important, this repeat contracting creates rents that 

can be bargained over at each renewal.5 However, unlike classic examples of relationship-

specific investments from the transactions cost literature (Williamson 1975, 1985; Klein et al. 

1978), relationship-specific learning does not generally require costly up-front investment, so the 

lack of a long-term contract should not create an inefficiency.6 

 
4 Exceptions to single-well contracting tend to occur in large well-established fields where geologic uncertainty is 
low. For example, trade publications and interviews with industry participants have indicated that, in the large 
Barnett Shale gas field in East Texas, development wells are virtually guaranteed to find gas and producers there 
regularly sign long-term contracts with their rigs. 
5 I do not possess proprietary data on specific transactions with which the allocation of rents can be analyzed. 
6 An inefficiency may arise if firms are capable of enhancing relationship-specific learning through costly 
investments such as job training. In the absence of a long-term contract, firms may under-invest. In addition, 
bargaining over the rents generated by relationship-specific learning should not lead to inefficiencies via premature 
termination of relationships. In particular, neither firm should ever have an incentive to terminate a relationship in 
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Producers initiate the contracting process by issuing a request for quotation (RFQ) from 

drilling companies with rigs in the vicinity of the proposed well. The RFQ contains technical 

specifications regarding the well to be drilled, including for instance the well’s total depth, the 

types of steel casing to be installed in the well, and properties of the “drilling mud” to be pumped 

through the borehole during drilling. The driller then includes in its bid, along with price, the 

identities of the rig and crew it proposes to drill the well. In cases where a producer is following-

up an initial well with further drilling and wishes to retain its current rig, it will generally renew 

its current contract rather than hold another auction. 

The RFQ will specify which of two standard contract types will be used: “dayrate” or 

“footage.” In a dayrate contract, the drilling company provides a rig and crew to drill the well 

under the producer’s direction, charging it a daily payment for the rig’s services. The producer is 

represented on the rig by one of its personnel, known as the “company man,” who directs the 

rig’s daily operations, typically in consultation with the rig’s foreman. The company man has 

final authority over decisions regarding, for example, which drill bit to use, the weight to place 

on the drill bit while drilling, and how to respond to drilling problems such as stuck drill pipe. 

In a footage contract, the rig is compensated at a rate set in dollars per foot drilled. This 

contract type is equivalent to a fixed-price contract since the well’s depth is specified in advance 

in the RFQ. The producer may or may not place a company man on the rig. If present, he may 

monitor the rig’s activities and consult with the rig foreman on drilling decisions but has no 

direct contractual authority. The rig is free to make day-to-day drilling decisions subject to the 

technical specifications of the RFQ. 

Corts and Singh (2004) empirically examine the determinants of contract type in the 

offshore drilling industry and verify several intuitive theoretical predictions. For example, 

dayrate contracts are used more frequently in situations in which there is a large amount of 

geologic uncertainty, since producers are better-equipped with the knowledge and technical staff 

to address geologic risk. The choice of contractual form also affects drilling performance 

incentives. Under a footage contract, the rig will have a direct monetary incentive to exert a high 

level of effort and drill quickly, but this incentive will not exist under a dayrate contract. 

However, indirect performance incentives are likely to be important. Rig reputations are well-

known by producers, and rigs known to have effective, experienced crews can command a 

dayrate premium over other rigs. Also, because the producer’s company man is present on the rig 

on a dayrate contract, he can observe the efforts of the rig foreman and crew. In an environment 

                                                                                                                                                             
order to prevent the other firm from obtaining too much bargaining power: both firms always hold an outside option 
to find another contracting partner and therefore cannot be made worse off than they would be with a new partner. 
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in which repeat contracting is common, this observability of effort can generate implicit 

performance incentives for the contractor (Corts 2007).  

 

III. Firm-Specific and Relationship-Specific Learning 

This paper considers learning that is both firm and relationship-specific. Firm-specific 

learning refers to improvements in a firm’s productivity that are associated with increases in the 

firm’s experience. This “standard” learning-by-doing effect has been widely documented in the 

literature, beginning with Wright’s (1936) and Alchian’s (1963) studies of aircraft 

manufacturing. Relationship-specific learning, on the other hand, refers to productivity increases 

that depend not only on a firm’s general experience but also its joint experience with the 

particular firms with which it works. These joint experience effects have received little attention, 

though McCabe (1996) finds evidence suggestive of relationship-specific learning in the 

construction of nuclear power plants: the productivity of primary construction contractors 

engaged in brief relationships with their utilities was lower than that of contractors in long-term 

relationships. Huckman and Pisano (2006) similarly finds evidence suggesting that the 

performance of cardiac surgeons, who often work as freelance contractors across multiple 

hospitals, depends more on their hospital-specific experience than on their general experience.7 

In the drilling industry, mechanisms exist for learning along three dimensions: (1) 

producer-level firm-specific learning; (2) rig-level firm-specific learning; and (3) relationship-

specific learning between producers and rigs working together. Producer-specific learning occurs 

because producers accumulate and learn from information with every well they drill. For 

example, the optimal selection of drilling mud depends critically on the types of rock 

encountered throughout the well bore, and a producer may drill several wells before discovering 

the ideal mud composition via an educated trial-and-error process. Producers’ learning is 

therefore technical in nature and tends to be field-specific. This learning is well-recognized 

within the drilling industry, and several engineering case studies have documented how 

producers use past experience to reduce drilling times. See, for example, Brett and Millheim 

(1986) and Adeleye et al. (2004). 

Because rigs are usually not involved in well design and planning, rig-specific learning 

tends to be less technical in nature than producer-level learning. Instead, rigs’ learning comes 

from improved teamwork and developments in crew members’ skills. For example, crews 

 
7 Neither McCabe (1996) nor Huckman and Pisano (2006) addresses the possibility that the estimated learning 
effects may be driven by match-specific heterogeneities. 
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become more efficient at lowering drilling pipe into a hole, ninety feet at a time, after carrying 

out this same task on numerous wells in the past. 

Finally, several mechanisms of relationship-specific learning are possible. The rig’s crew 

may become familiar with the producer’s particular drilling procedures or the geology of its 

fields, or the producer’s company man may improve his knowledge of the capabilities of the rig 

and its crew. Industry participants have also indicated that repeated personal interactions 

between the firms’ personnel are likely to be important. For instance, the ability to rapidly solve 

drilling problems, such as the sticking of pipe in the wellbore, is an important determinant of 

drilling efficiency. These problems may be more easily solved if the company man and rig 

foreman have, through repeated personal interactions, developed a working relationship that 

allows them to collaborate effectively.8  

The intuition behind relationship-specific learning has a parallel in recent theoretical 

work. Ellison and Holden (2009) develop a model in which a principal hires an agent to 

repeatedly take an action. The optimal action in each period is state-dependent, but the principal 

cannot communicate a complete contingent plan to the agent. Thus, in some states of the world, 

the agent may not take the optimal action. However, once a state has been realized and acted 

upon, the principal gains the ability to communicate the optimal action for that state, so that the 

agent can take that action when the state occurs again. In this way, the firms’ performance 

improves as they accumulate experience working together. 

 

IV. Data 

The central empirical challenge of this paper is to separate the impact of relationship-

specific learning from that of firm-specific learning. My approach uses two datasets of drilling 

activity in Texas. I obtained the first of these from the Texas Railroad Commission (TRRC), 

Texas’s oil and gas industry regulator. These data consist of well-level records of every well 

drilled in the state from 1977-2005. Each observation identifies the field and county in which the 

well was drilled and the identity of the producer that drilled the well. I take the number of days 

required to drill each well as the difference between the well’s completion date and the date 

drilling began. This latter date was not regularly recorded until 1991: only 67.7% of observations 

 
8 This mechanism suggests that relationship-specific learning occurs between the producer’s company man and the 
rig’s crew rather than the producer and the physical rig itself. The ideal empirical analysis would therefore use data 
on the duration of relationships between producer and rig personnel (the rig foreman in particular). However, I only 
possess data on relationships between producers and rigs, not personnel, so am measuring the true relationship of 
interest with error. This error may not be too severe given that rig foremen typically have multi-year spells with a 
single rig, but will nonetheless attenuate estimates of relationship-specific learning.   
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have a drilling time prior to this date, compared to 89.8% afterwards. I therefore focus my 

analysis on 1991-2005, during which there exist 106,946 TRRC observations with a recorded 

drilling time.9 

The TRRC data do not include the identities of the drilling rigs that drilled each well. I 

therefore obtained information on rig activity from Smith Bits (SB). Smith Bits is a manufacturer 

of drilling bits, and its field sales force issues weekly reports on all onshore rig activity in North 

America. These reports give each rig’s location, by county, on every Friday from 1989 to 2005 

and also provide the identity of the production company to which the rig is contracted. Unlike 

the TRRC data, the unit of observation in the SB data is a rig-week, and I do not observe 

individual wells. For example, I might see in the SB data that a particular rig worked for 25 

consecutive weeks, but these data alone yield no information regarding how many wells it drilled 

during that time span. 

I merge the SB rig location data into the TRRC’s drilling records to create a well-level 

dataset in which each observation reports the well’s drilling time, location, producer, and drilling 

rig. Unfortunately, a large fraction of wells in the TRRC data cannot be matched to rig 

information in the SB data. Match failures occur for four reasons: (1) wells drilled in less than 

one week will not appear in the SB data if there is no drilling on a Friday; (2) names of 

production companies are not harmonized across the two datasets; (3) the SB data have missing 

observations; and (4) when a producer drills multiple wells simultaneously in the same county, it 

is not always possible to match a particular rig to a particular well. Online Appendix 1 discusses 

the data merge process in detail and notes that match failures are not systematic in a way that 

could bias the main empirical results. 

The data merge yields a dataset with 33,125 observations (wells) for which the producer 

and drilling rig are known. Of these wells, 7.7% are exploratory wildcats and are dropped 

because the field location is not recorded. In addition, because horizontal and directional wells 

are typically best-drilled with specialized rigs, I omit these wells, comprising 20.2% of the data, 

from my analysis. I also drop dry holes, comprising 14.3% of the remaining observations, 

 
9 While the TRRC asks producers to report the date drilling began for all their wells, this reporting is not rigorously 
enforced. Beyond the missing data, 2.7% of the observations from 1991-2005 have drilling times that are clearly 
erroneous or technically infeasible. I drop wells with drilling times that are negative, wells with drilling times 
greater than 180 days, and wells that are more than 3,000 feet deep and implausibly reported to have been drilled in 
a single day. The incidence of these observations and those with missing drilling times is not correlated with the 
experience variables that I ultimately use in my analysis. 
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because their drilling times can be artificially inflated if the producer keeps the rig on-site while 

it attempts to coax the well to flow.10 

Finally, I drop all fields, producers, and rigs for which there is only one observation since 

tracking learning for such entities is not possible. The final matched dataset consists of 19,059 

wells, spread over 1,354 fields, 704 producers, and 1,339 rigs. Table I indicates that there is a 

large variance in drilling activity across these entities. For example, in some fields I observe only 

two wells while in others I observe hundreds. Table I also indicates variance in the number of 

producers working within any field: some fields are drilled by only one producer and others are 

drilled by more than ten. The summary statistics given at the top of Table II indicate that the 

sample average drilling time is 23.0 days and the average well depth is 9,036 feet. 

 

V. A Model of Learning-by-Doing in the Drilling Industry 

V.A. Production Function 

This paper models the objective of producers to be the minimization of the time needed 

to drill any given well, as motivated by their objective to minimize drilling costs. While this 

approach is necessitated by the fact that I lack well-level cost data, it parallels the way producers 

and engineers actually view drilling efficiency and is arguably superior to using cost data were 

such information available. In practice, drilling engineers achieve cost savings almost entirely by 

reducing the time necessary to drill wells. Given a particular well and rig, there is little scope for 

substitution between drilling time and labor or capital. Rigs always work 24 hours per day and 

seven days per week, and adding crew members cannot increase the rate of penetration. Most 

capital drilling inputs, such as the casing and tubing that are installed in the well and the 

equipment on the rig itself, are fixed functions of the well’s depth and the particular rig. For 

these reasons, learning curve case studies in the petroleum engineering literature use drilling time 

as their performance metric, even though the authors typically have access to detailed cost data. 

Brett and Millheim (1986) argue that the drilling time metric is superior to a cost metric, since 

cost data are polluted by inconsistent accounting methods and variations in materials prices and 

rig rates. Moreover, rig rates are likely to be endogenous in my empirical model because the 

rates charged by rigs rise during periods of high drilling activity, creating spurious correlation 

between drilling cost and experience.  
 
10 While horizontal, directional, and dry holes are not used in the final dataset, I still “count” the fact that they were 
drilled when I calculate the experience variables for the associated field, producer, and rig. Although the field 
locations of wildcats are unknown, their drilling is included in the experience of the associated producer and rig. 
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My measure of drilling productivity is therefore the rate of drilling in feet per day, which 

firms try to maximize subject to the constraints imposed by geology, safety, and the physical 

capabilities of the drilling rig used. Throughout this section, I assume that the producer and rig 

are aligned in their objective to maximize the rate of drilling given the implicit performance 

incentives discussed in Section II.B.11 For a given well—the unit of observation—let y denote 

the well’s inverse rate of drilling in days per foot. y is assumed to be determined by equation (1):                   

(1)                                                         y = ϕ·g(Ω)·ν  

ϕ denotes the baseline drilling rate of the rig drilling the well, given its characteristics 

such as its horsepower. Ω denotes factors such as the efficiency of the rig crew and the decisions 

the firms make regarding how to drill the well—for example, the choice of drilling mud, the 

weight to apply onto the drill bit, and the responses to drilling problems such as stuck pipe. The 

function g(Ω) translates these factors, which are unobservable, into their effect on the rate of 

drilling. The firms’ objective to maximize the rate of drilling therefore translates to an objective 

to minimize g(Ω) by making optimal drilling decisions. That is, firms search for the optimal set 

of decisions Ω* that minimizes g(Ω). Finally, ν denotes field and well-specific factors that impact 

the rate of drilling, such as the characteristics of the rock, the depth of the well within the field 

(drilling times are superlinear in depth so that drilling rates tend to be lower for deeper wells), 

and the realization of any drilling problems.12 

Experience effects—learning-by-doing—do not enter directly into equation (1) but 

instead affect drilling productivity by improving the quality of the factors Ω, moving them closer 

to Ω* and leading to a decrease in g(Ω). Denote experience by E, and (postponing the definition 

of E to the next subsection) let log(h(E)) denote the learning process by which experience 

improves log(g(Ω)) on average, so that equation (2) denotes a projection of log(g(Ω)) onto 

log(h(E)). In (2), log(η) denotes idiosyncratic deviations of log(g(Ω)) from the expected learning 

curve given by log(h(E)), potentially reflecting a trial-and-error process of learning. The 

definition of log(h(E)) as the average learning process implies that log(η) is orthogonal to 

log(h(E)). 

(2)                                             log(g(Ω)) = log(h(E)) + log(η)  

 
11 The relationship between contractual form and drilling productivity is explored in Section VIII.C. 
12 Geologic heterogeneity is predominantly cross-field rather than within field. For example, regressing well depth 
on a set of field fixed effects yields an R2 of .88.  
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Let p and r denote the producer and rig that drill the well, f denote the field in which the 

well is drilled, and t denote the date at which drilling is complete. Allowing for producer-specific 

“baseline” drilling efficiencies that are independent of experience and for field-specific factors 

within ν, equations (1) and (2) can be combined to yield the fixed effect specification (3), in 

which γf, δp, and ϕr denote field, producer, and rig fixed effects, respectively: 

(3)                                log(yfprt) = log(h(E)) + γf + δp + ϕr + θXfprt + εfprt  

The disturbance εfprt is a composite error term: the sum of log(η) and log(ν). Xfprt denotes 

a vector of observable variables that plausibly impact drilling productivity: (1) a cubic 

polynomial in the well’s depth; (2) dummy variables for whether the well is drilled for oil, gas, 

or both; (3) dummy variables for month-of-year that capture seasonal weather patterns; and (4) 

yearly dummy variables that capture any industry-wide technological progress.13  

V.B. Specification and Calculation of Experience 

In the reference case model I let log(h(E)) take the form given by equation (4) below, 

yielding a log-log specification for learning-by-doing, as is common in the literature: 

(4)              1 2 3 4 5
ˆ ˆlog( ( )) log( ) log( ) log( ) log( ) log( )ft pt fpt rt prth E β E β E β E β E β E       

Eft denotes the industry’s overall experience in field f on date t, regardless of which firms 

have been drilling in the field. Ept denotes the overall experience of producer p, and Efpt denotes 

the experience of producer p in field f. These three variables are analogous to the experience 

variables used in previous learning-by-doing studies, such as Thornton and Thompson (2001). 

Efpt measures the experience of the lead firm (p) at a particular type of project (f), while Eft and 

Ept measure cross-firm and within-firm spillovers, respectively. The primary contribution of this 

paper is the addition of the ˆ
rtE and ˆ

prtE  terms. The former denotes the overall experience of rig r, 

and the latter denotes the joint experience that rig r and producer p have working together.  

The coefficient β5 measures the strength of relationship-specific learning. For now, the 

specification is agnostic as to whether relationship-specific learning is driven by personal 

interactions between the producer and rig or by the rig’s increasing familiarity with the technical 

procedures specific to its producer and/or its producer’s fields (task-specific learning, in the 

 
13 In alternative specifications, I use a polynomial function of time to capture technological change. Doing so does 
not substantially affect the estimated results. 
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language of Gibbons and Waldman [2004, 2006]). This distinction will be explored in Section 

VIII.B by breaking ˆ
prtE  into field-rig, producer-rig, and field-producer-rig specific components.  

I measure Eft, Ept, and Efpt as the number of wells recently drilled, while ˆ
rtE and ˆ

prtE  are 

measured as the number of weeks of recent drilling experience (I discuss why I use recent rather 

than total experience below). The ˆ
rtE and ˆ

prtE  variables are measured in units of time rather than 

wells (Ert and Eprt) because rig-level learning occurs through the repetition of tasks and the 

accumulation of interactions with the producer, both of which should be functions of time. 

Moreover, this calculation is necessitated by the data, since Smith Bits tracks drilling activity in 

rig-weeks rather than well-by-well. For the field and producer experience variables, the measures 
ˆ

ftE , ˆ
ptE , and ˆ

fptE  that calculate experience as the number of days of recent drilling activity exist 

in the TRRC data and are potential alternatives to the  Eft, Ept, and Efpt measures that count the 

number of wells drilled. I use Eft, Ept, and Efpt in the reference case empirical specification rather 

than ˆ
ftE , ˆ

ptE , and ˆ
fptE  for several reasons. First, the field and producer-specific dimensions of 

learning tend to be technical and driven by the geologic information gained with each penetration 

rather than the accumulation of days of experience (a counter-argument would be that, if firms 

tend to learn more from mistakes than from successes, measuring experience using time spent 

drilling may be more appropriate). Second, the Efpt measure is used in the petroleum engineering 

literature, not ˆ
fptE . Third, and finally, the use of  Eft, Ept, and Efpt ultimately yields estimates of 

field-producer learning that are larger in magnitude than when ˆ
ftE , ˆ

ptE , and ˆ
fptE  are used, 

consistent with a story in which Eft, Ept, and Efpt are the true measures of experience, which ˆ
ftE , 

ˆ
ptE , and ˆ

fptE  measure with error (see columns (1) and (4) of Online Appendix Table A3). 

Eft, Ept, and Efpt for a given well are defined as the number of wells for which drilling was 

completed during the two years prior to date t—the completion date of the well in question.14 

This well itself is also included in Eft, Ept, and Efpt, implying that all wells in the dataset have at 

least one unit of experience and avoiding a logarithm of zero in a log-log learning specification.15 

I measure experience using drilling within the past two years rather than the total cumulative 

number of wells drilled because the majority of the fields and firms in the dataset existed prior to 

 
14 Defining t as the completion date—the date drilling ended—rather than the date drilling began ensures that when 
the drilling of two wells partially overlaps in time (because multiple rigs are being used simultaneously within a 
field or by a producer), the well that is completed first counts as experience for the second well. I choose this 
approach because it allows the second well to benefit from experience gained through drilling the first well, which 
would have penetrated through any given depth a few days in advance of the second well. If two wells are 
completed on the same date, neither well counts as experience towards the other. 
15 The “hat” versions of these variables, which are ultimately used as instruments and measure experience as the 
recently accumulated number of days of drilling, do not include the drilling time of the well completed at t in the 
experience calculation. Instead, I treat the well completed at t as counting for only 1 day of experience in all cases, 
thereby ensuring that these experience measures are never zero and enabling the log-log learning specification. 
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the start of the sample.16 I therefore have no means to calculate a cumulative experience 

measure. Even so, it is not clear that experience gained many years before time t is relevant to a 

producer’s expertise at t. Studies by Argote, Beckman, and Epple (1990), Benkard (2000), and 

Thompson (2007) have demonstrated that experience effects decay with time as learning is 

“forgotten,” supporting the importance of recent experience in determining productivity. Section 

VI.B discusses evidence of forgetting effects in the drilling industry. 

I measure a drilling rig’s stand-alone experience ˆ
rtE  as the number of weeks the rig was 

actively drilling within the two years prior to t. Producer-rig joint experience ˆ
prtE  is defined 

similarly (both of these variables also always include a one for the current week). Finally, I 

calculate all five experience variables using the original TRRC and SB datasets rather than the 

smaller dataset generated by the match of the TRRC data to the SB data. Were I instead to use 

this smaller dataset, I would systematically understate each measure of experience. Summary 

statistics for all five experience measures are presented in Table II. 

 

V.C Estimation and Identification; Producer-Rig Matching 

Given the fixed effects and control variables Xfprt in equations (3) and (4), the effects of 

producer and field-level learning (β1, β2, and β3) are identified through variations in each 

producer’s drilling activity within and across each field. There exist numerous sources of such 

variation, including changes in oil and gas prices (which will have heterogeneous effects across 

fields), discovery of new fields, and the identification of unexploited reserves in existing fields 

(through seismic imaging technology, for example). The coefficients on ˆ
rtE and ˆ

prtE  are 

separately identified through two sources of variation: (1) changes in the producer to which a 

given rig is contracted; and (2) the employment of multiple rigs (either simultaneously or in 

series) by a producer. Such variation arises because, once a producer and rig begin working 

together, they do not work with each other indefinitely. Eventually, the producer will run out of 

wells that it wishes to drill, at least temporarily, and release the rig. For instance, the producer 

may cease drilling in order to evaluate the oil production from its new wells before continuing 

with additional drilling. When the producer wishes to re-commence drilling, it may not be able to 

work with its previous rig if that rig has contracted with another producer, and it will therefore 

start a relationship with a new rig. 

 
16 The choice of two years is a compromise between capturing the tenures of rig crews and rig foremen. I discuss the 
results’ robustness to measurements of experience using periods other than two years in Online Appendix 2. 
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Identification of relationship-specific learning in equations (3) and (4) will fail if rigs 

have producer-specific characteristics (independently of human capital acquired through 

learning) and are likely to have longer relationships with producers with which they are well-

matched in their ability to efficiently drill wells. Such matching would generate a negative 

correlation between ˆ
prtE  and the disturbance εfprt, leading to a downward-biased estimate of β5. 

As noted in Section II.B, however, a rig’s equipment is generally not field or producer-specific, 

apart from its depth rating, suggesting that match specificities are unlikely to be a serious 

concern. Nonetheless, I address the potential bias in equation (3) arising from producer-rig 

specificities by adding fixed effects ηpr for producer-rig pairs to the specification, yielding 

equation (5) below. Equation (5) is the reference case model on which I will focus in estimation.        

(5)                                    log(yfprt) = log(h(E)) + γf + ηpr + θXfprt + εfprt  

 With the inclusion of the ηpr, identification of relationship-specific learning (β5) comes 

only from variation in joint experience within each rig-producer pair.17 It is important to note 

that, even with the producer-rig fixed effects included in equation (5), the specification is, strictly 

speaking, only estimating a learning rate for those producer-rig pairs that are actually observed in 

the data. If producers are more likely to work with rigs with which they anticipate having steep 

relationship-specific learning curves, then the hypothetical learning rate for unobserved 

producer-rig pairs could be lower than the learning rate estimated from equation (5). Short of 

being able to run a randomized experiment, it is not possible to estimate an “average” learning 

rate over all possible rig-producer pairs. However, it is not clear that such a learning rate is 

actually a parameter of greater economic interest than the learning rate for relationships that 

actually occur in the industry, which is the learning rate estimated here. 

A second potential impediment to the identification of learning effects is serial 

correlation in the disturbance term εfprt, which may present a problem via an argument similar to 

that made in Benkard’s (2000) study of learning in aircraft manufacturing. For the experience 

variables that are measured in accumulated drilling time— ˆ
rtE  and ˆ

prtE —positive shocks to εfprt 

in the recent past increase the amount of experience. If the disturbances are serially correlated, 

then ˆ
rtE  and ˆ

prtE  will be positively correlated with εfprt, leading to upward bias (towards zero) in 

the estimated learning rates. That is, serial correlation biases the estimates away from finding 

evidence of learning. This bias may be particularly important for relationship-specific learning, 

 
17 β4 is still identified in the presence of producer-rig fixed effects because rigs sometimes have multiple 
employment “spells” with a single producer, and Ert will be different in each spell. β1, β2, and β3 are identified when 
multiple rigs drill simultaneously within a field, producer, and field-producer, respectively. 
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since it is likely that serial correlation is greatest for wells drilled in sequence by the same 

producer and rig rather than for wells drilled by different firms. Conversely, for the variables Eft, 

Ept, and Efpt that calculate experience as the number of wells drilled within the two years prior to 

date t, the bias from serial correlation works in the opposite direction, exaggerating the estimated 

learning effect. This bias arises because producers often drill wells one right after the other. In 

such cases, the number of wells drilled within any fixed time period (such as two years) will be 

inversely related to the number of days required to drill each well. With serial correlation in the 

disturbance, positive shocks to the current well’s drilling time will be positively correlated with 

past shocks and therefore negatively correlated with experience, yielding a mechanical 

downward bias (away from zero) in the estimated learning rates. 

Benkard (2000) addressed serial correlation by instrumenting for experience using 

macroeconomic demand and cost shifters such as the price of oil. This approach is not viable 

here because, while such shifters can explain changes in aggregate drilling industry experience, 

they cannot explain firm, relationship, or field-specific experience. Fortunately, it appears that 

serial correlation in εfprt is not a substantial issue in this setting: the estimated first-order 

autocorrelation parameter of the residuals from equation (5), within each producer-rig pair, is 

only .081.18 This parameter is much smaller than the values near .5 found in Benkard’s (2000) 

study. Moreover, Benkard found that the interpretation of the results from the instrumental 

variables estimate was “essentially the same” as that from the non-instrumented estimate, despite 

the high autocorrelation parameter.19  

Thus, the impact of serial correlation on the estimated parameters of equation (5) is likely 

to be minor: the coefficients on ˆ
rtE  and ˆ

prtE  will be biased slightly upwards (towards zero), and 

the coefficients on Eft, Ept, and Efpt will be biased slightly downwards. Given that the main 

parameter of interest is the coefficient on ˆ
prtE , the results will therefore be biased against finding 

evidence of relationship-specific learning. To be conservative in the estimated rates of learning 

associated with the Eft, Ept, and Efpt terms as well, the reference case estimate of equation (5) 

instruments for Eft, Ept, and Efpt with measures of experience based on accumulated drilling time: 
ˆ

ftE , ˆ
ptE , and ˆ

fptE .20 Because serial correlation will cause these instruments to be positively 

 
18 The autocorrelation parameter was estimated following Anderson and Hsiao (1981) to address the small number 
of observations for some producer-rig pairs. That is, the first-differenced residuals were regressed on lagged first-
differenced residuals, using the second lag of the residuals as an instrument. 
19 Serial correlation is relevant only for the most recently produced units (wells, in my case), but the experience 
variables track production over a long period of time. Thus, serial correlation should cause only a small part of 
experience to be correlated with the disturbance term, and least-squares estimates should therefore not be 
substantially biased, consistent with the results from Benkard (2000).  
20 The first stage estimates are strongly statistically significant, as shown in Online Appendix Table A1. 
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correlated with the disturbance, this approach reverses the direction of bias. As expected, the 

difference between the reference case and non-instrumented estimates of the coefficients on Eft, 

Ept, and Efpt is not substantial. In particular, the estimated coefficient on Efpt is -0.023 in the 

reference case and -0.028 in the non-instrumented estimate (see column (5) of Online Appendix 

Table A3 for the full set of estimates from the non-instrumented model). The unbiased estimate 

of this coefficient lies between these two bounds. 
 

VI. Primary Estimation Results for Relationship-Specific Learning 

VI.A. Primary Specifications 

Table III, column (1), presents the estimated learning rates for the reference case model 

given by equations (4) and (5). The estimated coefficient on ˆlog( )rtE —the stand-alone 

experience of the drilling rig—is -0.014 and marginally statistically significant (the p-value is 

.135). This point estimate implies that a rig with one year’s experience will improve its drilling 

performance, independently of the producer with which it contracts, by 5.4%. The estimated 

coefficient on ˆlog( )prtE —the joint experience between the rig and the producer to which it is 

currently contracted—is -0.019 and statistically significant at the 1% level. This estimate implies 

that maintaining a stable relationship for a full year will yield a relationship-specific productivity 

improvement of 7.3% that is additional to the 5.4% stand-alone improvement. Thus, on average, 

rigs with stable contracting relationships are estimated to improve their productivity more than 

twice as quickly as rigs that frequently change contracting partners. 

I use these estimated coefficients to obtain an estimate of the average cost savings 

obtained through relationship-specific learning. In a counterfactual in which joint experience 

yields the same productivity benefit as stand-alone experience (that is, β5 equals zero in (4)), the 

average drilling time in my sample would be increased by 4.9%, equal to 1.13 days at the sample 

average drilling time of 23.0 days.21 At the 2005 rig dayrate of approximately $11,000 per day 

for a well of average depth, this efficiency gain translates to an average reduction in rig rental 

cost of approximately $12,400 per well. Section VII examines the extent to which this cost 

saving leads firms to maintain long-term relationships. 

Other estimated coefficients are also of economic interest. The estimated coefficient on 

field-producer-specific experience (Efpt) is -0.023 and statistically significant at the 1% level, 

indicating that producers accumulate field-specific technical expertise as they drill more wells, 

 
21 The 4.9% figure is equal to the sample average of 

5
ˆ ˆ100(exp( ) 1)

prt
β E  . 
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independently of the rigs they hire. There is little evidence of experience spillovers across 

producers working in the same field or across fields drilled by the same producer: the estimated 

coefficients on Eft and Ept are negative but small in magnitude and statistically insignificant. This 

result contrasts with those of Irwin and Klenow (1994) and Thornton and Thompson (2001), 

which identify modest cross-firm spillovers in the semiconductor and shipbuilding industries, 

respectively. Drilling industry participants have indicated that the lack of spillovers may be due 

to common pool extraction problems: when multiple producers operate in the same field, an 

increase in production by one firm may deplete the resource in a way that adversely affects the 

production of the other firms. Thus, producers may be unwilling to aid each other by sharing 

their drilling procedures.22 Still, manufacturers of semiconductors should also be unwilling to 

share knowledge, suggesting that motives for secrecy are unlikely to be the sole driver of the 

difference in these results. Future research is needed to understand the factors, such as rates of 

employee turnover, for example, that influence learning spillover rates in different industries. 

The estimated coefficients on the control variables Xfprt are given in Online Appendix 

Table A2 and generally agree with intuition. The combination of coefficients on the well depth 

polynomial indicates that deeper wells have slower drilling rates than shallow wells. The impact 

of the presence of natural gas is imprecisely estimated. The pattern of month dummies suggests 

that drilling times tend to be lower in the spring and fall, when temperatures are neither 

extremely hot nor cold, though the effects are not statistically significant. The year fixed effects 

suggest the presence of some industry-wide technological improvement in the latter half of the 

sample, though these coefficients are also not statistically significant. 

Column (2) of Table III examines the extent to which match specificities between 

producers and rigs bias the estimate of relationship-specific learning in the absence of producer-

rig fixed effects. This specification estimates the model given by equations (3) and (4), in which 

there are separate fixed effects for producers and rigs but not fixed effects for producer-rig pairs. 

The estimated rate of relationship-specific learning is virtually unchanged: the new point 

estimate on ˆlog( )prtE  is -0.0190 rather than -0.0193. This result is consistent with a limited 

effect of producer-rig match specificities on relationship durations, consistent with the industry 

characteristics discussed in Section II.B.23 

 
22 Conversations with industry participants have indicated that producers will sometimes include confidentiality 
clauses in their drilling contracts to prevent rig crews from sharing field-specific knowledge across producers. 
23 As a robustness check, I have estimated the reference case specification while including field-producer and field-
rig fixed effects in addition to the producer-rig fixed effects. Doing so does not substantially affect the estimated rate 
of relationship-specific learning: the estimated coefficient on producer-rig experience is -0.017 with a standard error 
of 0.008. Including field-producer-rig fixed effects yields nearly identical results. 
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Column (3) of Table III verifies that the finding of substantial relationship-specific 

learning is not driven by the assumed log-log functional form of equation (4). This specification 

estimates a flexible functional form in which Eft, Ept, Efpt, and ˆ
rtE  enter the specification as 

flexible splines, while ˆ
prtE  continues to enter as a log-log function. That is, I model: 

(6)                  1 2 3 4 5
ˆ ˆlog( ( )) ( ) ( ) ( ) ( ) log( )ft pt fpt rt prth E s E s E s E s E β E       

where s1 through s4 each denotes a 4th degree cubic spline. The estimate of β5 from equations (5) 

and (6) is -0.018, nearly identical to that of the reference case, confirming that the relationship-

specific learning result is not driven by the parameterization in equation (4). I also estimate a 

version of equation (6) in which all five forms of experience enter through splines. The estimated 

function 5
ˆ( )prts E  is plotted in figure I alongside the log-log learning curve from estimating 

equation (6). These two curves closely overlie each other, indicating that the log-log relationship 

is an appropriate choice of functional form. 

 Online Appendix 2 and Table A3 present additional tests of the robustness of the 

reference-case results, focusing on alternative measures of experience. 

 

VI.B. Relationship to Previous Learning Studies 

To compare the above results with previous work, I estimate the effect of producers’ 

experience on drilling productivity while omitting the influence of their relationships with rigs. 

This analysis follows previous learning-by-doing studies that investigate lead firm productivity 

but do not incorporate contractor relationships into the analysis. 

The specification given in Table III, column (4) uses only the first three measures of 

experience from equation (4): Eft, Ept, and Efpt, omitting rig-based experience measures as well as 

rig and producer-rig fixed effects. In this specification, the estimate of the coefficient on Efpt is -

0.038, substantially larger in magnitude that the -0.023 estimated in the reference case, in which 

rigs were taken into account. Column (5) includes rig fixed effects but continues to omit rig-

based experience measures: the estimate of β3 in this case is -0.032, still greater than the 

reference case estimate. These results demonstrate that investigations of learning-by-doing that 

do not consider both the identities of firms’ contracting partners and relationship-specific 

experience may overstate the contribution of lead firms’ experience to observed productivity 

improvements. 

Previous work (Argote, Beckman, and Epple 1990; Benkard 2000; Thompson 2007) has 

also studied institutional forgetting: the decay of experience effects over time. Paralleling these 
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studies, I ask whether drilling experience from the distant past has a smaller effect on current 

drilling rates than does recent experience. I first examine forgetting effects in a setting in which 

contracting relationships are not accounted for, following the literature. I focus on the forgetting 

of field-producer-specific experience Efpt given the lack of evidence of learning spillovers 

through Eft and Ept. I then examine the forgetting of this experience while taking producers’ 

relationships with rigs’ into account, to investigate the extent to which forgetting effects can be 

explained by relationship-specific learning. 

Thus far, I have defined Efpt as the number of wells drilled by producer p in field f during 

the two years prior to t. Here, I define Efpt as a function of a decay parameter δ per expression (7) 

below, in which Nfpτ denotes the number of wells drilled by producer p in field f on date τ. 

(7)                            ( )/365

730

( ) ( )
t

δ t τ
fpt fpτ

τ t

E δ e N

 

             

For negative values of δ, wells drilled on dates long before t carry less weight in Efpt(δ) 

than do wells drilled near date t. I estimate δ by inserting equation (7) into equation (8), which 

does not include measures of experience that involve rigs: 

(8)            log(yfpt) = β1·log(Efpt(δ)) +  β2·log(Eft) + β3·log(Ept)  + γf + δp + θXfprt + εfpt  

I estimate equation (8) using nonlinear method of moments. As in the non-forgetting 

estimates, I instrument for the three experience measures using the measures of experience based 

on accumulated drilling time.24 Estimation results are shown in column (6) of Table III. I obtain 

a point estimate of δ equal to -0.928 with a clustered standard error of 0.443, consistent with the 

presence of forgetting. 

The estimated rate of experience depreciation is somewhat large: the point estimate of δ 

implies that a well drilled one year ago makes a contribution to experience that is only 40% of 

that made by a well drilled one day ago. This depreciation rate is not as great as that estimated by 

Argote, Beckman, and Epple (1990) in shipbuilding (for which the corresponding figure is 

3.2%), though greater than that estimated by Benkard (2000) in aircraft manufacturing (61%). 

While this result could reflect literal human forgetting of knowledge or turnover amongst 

producers’ personnel, it may also reflect losses of intellectual capital associated with changes in 

producers’ drilling rigs. I investigate this possibility by augmenting equation (8) with rig fixed 

effects and variables measuring rig and relationship-specific experience, per equations (3) and 
 
24 The estimation also instruments for the derivative of experience with respect to δ using the derivative of drilling 
time-based experience with respect to δ. 
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(4).25 While the new point estimate of δ from this specification, given in Table III, column (7), is 

still negative and quite large in magnitude at -2.49, it is estimated imprecisely with a standard 

error of 1.72. This imprecise estimate suggests that losses of relationship-specific capital 

between lead firms and contractors may be one of the mechanisms behind the significant 

estimates of forgetting effects found in other studies. This result also relates to that of Thompson 

(2007), which found that controlling for labor turnover reduced the estimated rate of forgetting in 

the shipbuilding industry. 

 

VII. Empirical Analysis of Relationship Persistence 

This section empirically examines whether the pattern by which producer-rig 

relationships are formed and broken is consistent with firms’ recognition of relationship-specific 

learning. Specifically, do producers prefer to use rigs with which they have substantial prior 

experience? If so, is this preference driven by learning or by other factors? 

It is clear from the data that firms do generally maintain their relationships. When a 

producer releases a rig, it is rare that the rig is replaced with a new rig; instead, the producer 

simply ceases drilling, indicating that the relationship ended because the producer had no 

additional work to offer the rig. Specifically, only 12.8% of terminations are followed by the 

hiring of another rig by the producer within four weeks. This fact alone, however, can be 

supported by explanations other than learning and in particular by the presence of switching 

costs. I therefore test for relationship persistence by focusing on instances in which a producer 

has two rigs drilling for it in the same county. When the producer releases one of these two rigs, 

I ask whether the rig that is released is that having less producer-specific experience. This last in-

first out (LIFO) pattern would be consistent with firms’ maximization of the benefits of 

relationship-specific learning and would also be difficult to explain using switching costs alone 

since the test is conditioned on these costs being sunk. This pattern may, however, be consistent 

with the presence of other ex ante match specificities as discussed below.26 

 
25  I do not use producer-rig fixed effects in this specification because field-producer forgetting is not identified in 
their presence. Field-producer learning itself is only identified when a producer drills multiple wells simultaneously 
in a field; forgetting effects cannot be identified off of simultaneous drilling activity.  
26 Another alternative explanation is that the pattern reflects matching on the speed of firm-specific (not 
relationship-specific) learning. That is, a given producer and rig may match because they anticipate fast rates of 
firm-specific learning with that combination. However, it seems unlikely that such a story is the primary driver of 
relationship persistence, since relationship-specific learning provides a stronger incentive to maintain a relationship 
as its benefits are not appropriable across firm pairs. The only incentive to maintain a relationship that is provided 
by accelerated firm-specific learning comes from the desire to continue learning at a high rate so that future rents 
will be larger. This incentive will become weak over time as the firm-specific learning curve flattens. In addition, a 
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I execute this analysis using the original SB dataset, prior to its match with the TRRC 

data. There are 323,730 rig-week observations in this dataset, and for each I observe the county 

in which the rig is located and the producer for which the rig is drilling. Week-to-week, rigs 

maintain their relationship with their producer 89.5% of the time. Rigs change producers in 7.4% 

of the observations, implying that a switch occurs every 13 weeks, on average. Rigs also 

occasionally exit the market on a temporary or permanent basis; such exits together constitute 

3.1% of the data. 

I define all instances in which a producer has two rigs drilling for it in the same county as 

a “pair” and use these pairs as the unit of observation in my analysis.27 There are 907 unique 

pairs in the data, and with two rigs per pair there exist 1,814 total observations, spread over 821 

unique rigs and 531 unique county-producer combinations. Within each pair, I determine which 

rig leaves the pair first to work for another producer. I then capture this rig’s exit date and the 

producer-specific experience ˆ
prtE  of both rigs at that date. I then test for a systematic 

relationship between each rig’s experience and the identity of the rig that is released first: as the 

difference in producer-specific experience between the two rigs grows, does it become more 

likely that the less-experienced rig is released first? 

Figure II illustrates the evidence of relationship persistence in this sample. The horizontal 

axis plots the absolute value of the difference (in logs) of producer-specific experience between 

the two rigs in each pair. Thus, points plotted on the right side of the graph represent 

observations in which the two rigs have very different levels of producer-specific experience. All 

observations are grouped into bins of width 0.2, and the vertical bars indicate the number of pairs 

in each bin. Each plotted point indicates the percentage of pairs within each bin for which the 

less-experienced rig was the first to exit. There exists a clear systematic pattern in the data: as the 

difference in specific experience between the two rigs in each pair grows larger, it becomes more 

and more likely that the less-experienced rig will exit first. This pattern is consistent with firms’ 

recognition of relationship-specific learning’s benefits. 

Regression analysis confirms these graphical results. I use a conditional logit model to 

estimate the effect of a rig’s producer-specific experience on its probability of being the first to 

                                                                                                                                                             
hazard analysis finds that the hazard rate for relationship termination declines with relationship duration, more in 
line with the relationship-specific learning interpretation than with the accelerated firm-specific learning 
interpretation. 
27 I exclude pairs in which both rigs change producers during the same week. I also exclude all pairs in which one or 
both rigs leave its producer in order to exit the market rather than to work for another firm. This restriction implies 
that the rig movements I study in my analysis are not driven by a rig’s need for maintenance or repairs. 
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exit its pair. Specifically, I estimate equation (9) below, in which Experiencei1 denotes the 

producer-specific experience of rig 1 in pair i.  

(9)         
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Estimation results are reported in column (1) of Table IV: rigs with more producer-

specific experience are significantly less likely to exit first. The estimated marginal effect of -

0.061 implies that, in a pair consisting of a rig with 12 months of experience and a rig with 1 

month of experience, the less experienced rig has a 63.7% probability of being the first to exit.28 

Column (2) of Table IV presents the results of estimating equation (9) when each rig’s 

total experience is used as the explanatory variable. In this case, there is no significant 

relationship between experience and movements of rigs between producers. This result reflects 

the fact that the general experience of a rig does not provide productivity benefits that are 

producer-specific. While a highly experienced rig may be more productive than other rigs, its 

productivity when working for other producers will also be higher, and it is therefore likely to 

command a higher price in the market. 

Of course, there exist alternative explanations behind the LIFO pattern. First, it may be 

that some rigs have lower switching costs than others and therefore change jobs frequently. A 

market in which some rigs are “switchers” and others are “stayers” would generate a LIFO 

pattern even without relationship-specific learning. Second, ex ante match specificities would 

cause producers to hire rigs with which they match best first and then release those rigs last. 

To rule out heterogeneity in rig switching costs, I test for a LIFO pattern while including 

a set of rig fixed effects in the specification. I do so using a linear probability model, since 

including rig fixed effects in a conditional logit is likely to lead to an incidental parameters 

problem that will cause the estimate of β to be inconsistent (Neyman and Scott 1948; Lancaster 

2000). Fortunately, the baseline results do not appear to be sensitive to model choice. Column (3) 

of Table IV indicates that estimating a linear probability model with the log of producer-specific 

experience and group fixed effects as covariates yields a marginal effect very close to that of the 

conditional logit. Column (4) demonstrates that, when rig fixed effects are added to the 

specification, I still find a strong systematic LIFO effect. The estimated marginal effect is -0.067, 

compared to -0.059 in column (3), and is still statistically significant at the 1% level. Rig 

heterogeneity is not driving the LIFO result. 

 
28 Expanding the dataset to use groups with more than two rigs (there are 279 such groups) yields nearly the same 
point estimate of β as that found for the two-rig groups. 
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Taking a step further and adding fixed effects for producer-rig interactions would 

eliminate the influence of match specificities on this result. Unfortunately, within the 1,814 

observations in the sample there are 1,488 unique producer-rig combinations. The limited sample 

variation remaining after including these fixed effects precludes inference, as indicated in 

column (5) of Table IV. The standard error of the estimated marginal effect is nearly five times 

that of column (3), and this regression provides no evidence either for or against the LIFO 

pattern.  

Supplemental evidence, however, supports the hypothesis that the relationship 

persistence is not driven by pre-existing match specificities. I first examine the extent to which 

there is matching on an observable characteristic of rigs: their depth ratings. For each rig in each 

pair, I use the absolute difference between the rig’s depth rating and the average depth of the 

wells it drills for the producer as a measure of the quality of the match between the producer and 

rig. I then examine whether this “depth difference” varies across the first and second rig to enter 

each pair: a smaller difference for the first rig would be indicative of matching. I find that the 

distribution across pairs of the first rig’s depth difference is very similar to that of the second rig. 

A Kolmogorov-Smirnov test on these distributions fails to reject equality with a p-value of 

.565.29 This result indicates that at least on the basis of observable depth ratings, the two rigs in 

each pair are equally well-matched to their wells, inconsistent with a matching story.  

I also investigate pre-existing performance differences between the rigs in each pair by 

comparing the drilling times of the first well drilled by each rig. As with the depth differences, 

the data fail to reject equality of the initial performance of the rig that enters first with that of the 

rig that enters second: the Kolmogorov-Smirnov p-value is .528.30 This similarity between both 

the initial performance and the depth rating of the two rigs in each pair suggests that the LIFO 

pattern in the data is not driven by pre-existing match specificities between producers and rigs, 

but is instead consistent with a recognition by firms that maintaining long-term relationships 

helps to maximize the productivity benefits of relationship-specific learning. 
 
  

 
29 The average depth difference for the first rig to enter is 2,870 feet, while that for the second rig is 2,939 feet. A 
paired t-test fails to reject equality of these means with a t-statistic of 0.56. 
30 This test uses a dataset of 69 pairs for which both rigs can be matched to a TRRC observation (and therefore a 
drilling time) either upon entry or one week subsequent to entry. I adjust the drilling time of each rig for the effects 
of the producer’s field-specific experience and the rig’s overall experience per the estimated reference case learning 
specification (Table III, column (1)). On average, the adjusted first-well drilling time of the first rig to enter is 2.2% 
higher than that of the second rig (this difference has a t-statistic of 0.30). Without the experience adjustment, this 
difference is 2.5%.  
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VIII. Mechanisms Behind Relationship-Specific Learning 

This section examines the mechanisms behind the observed relationship-specific 

learning. Is this learning driven by repeated personal interactions between the rigs’ and 

producers’ personnel or by rigs’ increasing familiarity with technical procedures specific to 

particular producers and their fields? Understanding this learning mechanism is important 

because it has implications for firms’ optimal personnel and contracting practices. For example, 

if personal interactions are important, firms should have an incentive to maintain cross-firm 

relationships between their employees by, for example, ensuring that their contracting partners’ 

points of contact within their organizations do not frequently change.  

This section presents three sets of results: (1) evidence that relationship-specific learning 

is driven by a producer’s relationship with its specific rig, not the rig’s broader drilling company; 

(2) evidence that rigs’ field-specific experience alone is insufficient to drive relationship-specific 

learning; and (3) evidence that dayrate contracts (in which there is more personal interaction 

between the producer’s and rig’s personnel) are associated with a more rapid rate of relationship-

specific learning than are footage contracts. No single result is definitive on its own. For 

example, contract choice is likely to be endogenous, and while the finding of accelerated 

learning under dayrate contracts is robust to controls for factors that plausibly influence both 

contract choice and learning, a definitive instrumental variable strategy is not available. The 

three sets of results are, however, mutually reinforcing in that they are all consistent with a 

substantial role for personal interactions in driving relationship-specific learning. 
 

VIII.A. Rig Versus Driller Specificity 

I first examine whether the importance of producer-rig experience is driven by a given 

producers’ relationships with particular rigs or by their relationships with the drilling companies 

owning the rigs. I create two new experience variables: ˆ
dtE  measures the experience (in weeks of 

active drilling within the past two years) of drilling company d, and ˆ
pdtE  measures the joint 

experience of producer p with driller d. Column (2) of Table V presents results obtained when 

these two variables are included in the reference case learning specification (4) and (5). Neither 
ˆ

dtE  nor ˆ
pdtE  are estimated to significantly impact drilling times, and the coefficient on ˆ

prtE  

remains negative and statistically significant, indicating that relationship-specific learning occurs 

at the producer-rig level rather than the producer-drilling company level. This result implies that 

this learning is of a nature that cannot easily be transferred across rigs within a drilling company. 
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In particular, what is being learned by the rigs cannot simply be technical information about the 

producer’s procedures that can easily be written down and shared. 
 

VIII.B. Rigs’ Field-Specific Versus Producer-Specific Experience 

I next examine whether the estimated producer-rig experience effects are driven by the 

accumulation of each rig’s experience with its current producer, with its current field, or with 

both. Evidence on this question is already available in columns (2) and (5) of Table III, which 

compare rates of field and producer-specific learning across specifications that do (column (2)) 

and do not (column (5)) include rig and relationship-specific experience as covariates. When ˆ
rtE  

and ˆ
prtE  are included, the estimated impacts of field-producer-specific experience Efpt and 

producer-specific experience Ept are attenuated. However, the estimated impact of field-specific 

experience Eft in both specifications is essentially identical in magnitude and statistically 

insignificant. If relationship-specific learning were primarily driven by rigs’ field-specific 

experience, the coefficient on Eft in column (5) should be negative and significant, since rigs 

would carry field-specific knowledge to different producers working within the same field.31 The 

absence of such an effect is consistent with the importance of producer-specificities rather than 

field-specificities in the mechanism behind the observed relationship-specific learning. 

I attempt to further resolve the question of field-specificity vs. producer-specificity by 

creating two new experience measures. ˆ
frtE  measures rig r’s experience in field f, regardless of 

producer, and ˆ
fprtE measures rig r’s experience in field f with producer p. This decomposition of 

experience is complicated by the fact that the SB data do not contain field identifiers. Thus, even 

though I can identify each rig’s field location for each matched observation, I cannot do so for 

every week in which a rig is active. I therefore estimate each rig’s field-specific experience using 

a two-step procedure. First, within the matched data, I find the fraction of wells drilled by each 

rig within the past two years that were in the same field as the rig’s current field. I then multiply 

this fraction by the total number of weeks the rig has been active during the past two years, taken 

from the SB data. Each rig’s field-producer-specific experience is calculated similarly. The 

imputation of these variables suggests that the estimates below should be interpreted with 

caution as the estimated impacts of ˆ
frtE  and ˆ

fprtE  may be attenuated by measurement error bias. 

Inclusion of ˆ
frtE  and ˆ

fprtE  in the reference case model yields the estimates presented in 

column (3) of Table V. The estimated coefficients on ˆ
prtE  and ˆ

frtE  are small in magnitude and 

 
31 Within-field, cross-producer rig moves do occur in the data: 5,083 observations are associated with rig-field pairs 
for which wells are drilled for more than one producer. 
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statistically insignificant, indicating a lack of evidence that either a rig’s producer-specific or 

field-specific experience on its own is sufficient to significantly improve drilling productivity. 

However, the sum of the coefficients on ˆ
prtE , ˆ

frtE , and ˆ
fprtE  is equal to -0.025 and statistically 

significant at the 5% level, providing evidence that accumulating experience within both the 

same producer and same field is beneficial to productivity.32 The importance of rigs’ producer-

specific experience is consistent with the results from columns (2) and (5) of Table III, discussed 

above, and the importance of their field-specific experience is consistent with producers having 

different company men and drilling procedures across fields, limiting the cross-field 

transferability of knowledge. The strength of this result is, however, limited by the fact that it is 

no longer statistically significant at a conventional test size when fixed effects for the triple 

interaction of field, producer, and rig identifiers are included in the specification.33 

 

VIII.C. Relationship-Specific Learning and Contract Choice 

Finally, I examine the difference in learning rates between producers and rigs that work 

under a dayrate contract and those that work under a footage contract. A differential learning rate 

between these two contract types can shed light on the mechanism behind relationship-specific 

learning because under a dayrate contract there is more interaction between producer and rig 

personnel: the producer always has a company man assigned to the rig and directs the rig’s 

operations in consultation with the rig’s foreman. The difference between contracts in direct 

monetary incentives may also be important, as under a footage contract the rig is the residual 

claimant and therefore has a particularly strong incentive to improve its productivity. 

To evaluate learning rates across different contract types, I include in the regression an 

interaction of the log of producer-rig-specific experience ˆ
prtE  with the fraction α of that 

experience that was obtained under dayrate contracts. The results of estimating this 

specification—which for the moment should only be thought of as descriptive rather than 

 
32 A significant coefficient on the field-producer-rig specific experience term itself is not necessary to draw this 
conclusion. A test that a rig’s field and producer-specific experience are important, not just field-specific experience, 
requires that the sum of the coefficients on producer-rig and field-producer-rig experience be statistically 
significant—not the stronger condition that the coefficient on field-producer-rig experience be statistically 
significant—since adding producer-specific experience within the same field affects both of these terms. The sum of 
these coefficients is -0.024 and statistically significant at the 5% level. Similarly, the sum of the coefficients on 
field-rig and field-producer-rig experience is -0.020 and also statistically significant at the 5% level. 
33 These fixed effects address the possibility that the results are driven by match-specificities between fields, 
producers, and rigs. The fixed effects add 8,069 covariates to the specification and effectively remove from the 
sample 4,770 observations that are associated with a field-producer-rig triple for which I observe only one well, 
thereby hindering inference. The sum of the coefficients on the three experience variables is only statistically 
distinct from zero with a p-value of .232 in this specification.  
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causal—are presented in column (4) of Table V. The estimated coefficient on ˆlog prtE   is equal 

to -0.017 and is statistically significant at the 5% level, indicating that relationship-specific 

learning is stronger under dayrate contracts than under footage contracts.34 This regression also 

includes a dummy for whether any given well is drilled under a dayrate contract: the estimated 

coefficient on this dummy is positive with a point estimate of 0.022 and is marginally 

statistically significant with a p-value of .171. This result provides some evidence that the initial 

performance of a producer-rig pair is slightly better with a footage contract than with a dayrate 

contract; however, this advantage is reversed as experience is accumulated. 

A causal interpretation of the coefficient on ˆlog prtE   must take into account the 

possibility that there exist factors that influence both contract choice and the rate of learning. For 

example, firms may be more likely to choose a dayrate contract when drilling in fields that 

present substantial geologic risk, and learning curves in such fields may plausibly be relatively 

steep. An ideal identification strategy would use an instrumental variable. Unfortunately, such a 

strategy does not appear to be viable. Candidate instruments, such as measures of firms’ size that 

proxy for their risk appetites, are insufficiently powerful to yield informative results. In the 

absence of a viable instrumental variable strategy, the next-best approach is to examine the 

impact of dayrate contracts on learning while controlling for as many observable potentially 

confounding factors as possible, and it is this approach that I adopt here. 

I examine three sets of observables that seem likely to influence the contractual form 

chosen by a particular producer-rig pair working in a particular field. First, I use well depth, the 

average drilling time in the field being drilled (across all firms), and the variance of the drilling 

times in the field being drilled (also across all firms) to measure geologic risk. Second, I use the 

sizes of the producer and drilling company (as measured by their total number of well-weeks of 

drilling) to proxy for the firms’ willingness to bear risk. Third, I use the experience accumulated 

by the pair ( ˆ
prtE ) to capture any systematic tendency to switch contractual form over the course 

of a relationship. The importance of these factors in determining the choice of contract type is 

examined empirically in Online Appendix 3 and Table A4; the findings from this analysis 

generally agree with those from Corts and Singh’s (2004) study of the offshore drilling industry. 

In particular, dayrate contracts are more likely when geologic risk is high, when the producer is 

large, and later in relationships. Corts and Singh attribute this last result to the possibility that 

 
34 The estimated coefficient of -0.012 (p-value = .118) on the un-interacted producer-rig-specific experience variable 
indicates that relationship-specific learning is still likely to be occurring under footage contracts, albeit with a 
relatively low magnitude. 
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repeated interactions improve trust and thereby reduce the importance of direct performance 

incentives. 

Table V, column (5), examines the rate of learning under dayrate contracts while 

including interactions of the above determinants of contract choice with ˆ
prtE  to control for their 

potential impact on the rate of learning.
 

ˆ
prtE  itself enters this specification as a spline to address 

the possibility that the rate of learning late in relationships—when dayrate contracts are more 

likely—may be greater than or less than that given by the log-log functional form. The 

coefficient on relationship-specific experience accumulated under dayrate contracts, ˆlog prtE  , 

is estimated to be -0.017. This estimate is essentially identical to that from column (4), which 

omitted these controls, and is statistically significant at the 10% level. The result that learning is 

accelerated under dayrate contracts is therefore robust to controls for observable, relevant 

factors, though it may still be biased by unobservables. Column (5) of Table V also presents 

estimates of the coefficients on the other interaction terms: fields in which the variance of 

drilling times is particularly high are found to have relatively fast learning rates, but interactions 

involving other factors such as firm size are not estimated to have a significant effect.  

Column (6) of Table V addresses unobservable field-specific factors that could influence 

both contract choice and learning rates by including interactions of field dummies with 

relationship-specific experience ˆ
prtE . The specification still includes interactions of firm size 

with ˆ
prtE . The point estimate on ˆlog prtE   is -0.016, similar to the results in columns (4) and 

(5), though it is only statistically distinct from zero with a p-value of .196. This estimate is free 

of confounds driven by field-specific geology, though it may still be biased if there are 

unobserved firm-specific factors that affect both learning rates and the choice of contractual 

form.35 

The above results suggest that the increase in personal contact under dayrate contracts 

accelerates the rate of learning and that this effect dominates the direct learning incentives 

provided by footage contacts. I conclude this section by considering an implication of these 

results for firms’ optimal choice of contractual form. Because the benefits of accelerated learning 

accrue over time, if firms learn more quickly under dayrate contracts then the likelihood with 

which they use these contracts should increase with the expected duration of their relationship. I 

examine whether this systematic pattern holds using the sub-sample of producer-rig pairs that 

always use the same contractual form. I reduce the data to one observation per field-producer-rig 

triple, and regress each pair’s contract choice on the total duration of their relationship (in logs) 

 
35 Pushing further and adding interactions of producer and rig dummies with joint experience removes substantial 
identifying variation, yielding an estimated effect of -0.012 with a standard error of 0.015. 
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and field, producer, and rig fixed effects.36 Because the actual relationship duration is equal to 

the ex-ante expected duration plus error, this regression yields an attenuated estimate of the 

relationship between expected duration and the initial choice of contractual form.  

I find that a one-unit change in the log of the relationship duration is associated with a 

3.0% increase in the likelihood that a dayrate contract is used. This result is statistically 

significant at the 1% level.37 The small magnitude of the estimated effect may reflect both 

attenuation bias and forces that push in the opposite direction. For example, under a conventional 

story of contracting costs, footage contracts are more costly to write but provide a stronger 

productivity incentive, and they should therefore be favored in longer relationships since the 

initial contracting cost can be spread over a longer period. 

This section has presented three sets of results that speak to the mechanism behind 

relationship-specific learning. While no single set of results is definitive, together all three are 

consistent with a prominent role for cross-firm personal interactions in driving relationship-

specific learning. This finding suggests that the degree of contact between firms’ personnel 

should play a role in operational and contracting decisions, and the evidence that firms’ choice of 

contractual form depends on the expected duration of their relationship is consistent with this 

view. 

 

IX. Conclusions 

This paper demonstrates that relationship-specific learning can be an important driver of 

productivity improvement and play a role in firms’ contracting decisions. I find that a drilling rig 

that accumulates experience with one producer improves its productivity more than twice as 

quickly as a rig that frequently changes contracting partners. As a consequence, producers and 

rigs have a strong incentive to maintain their relationships, and the data demonstrate that 

producers are more likely to work with rigs with which they have substantial prior experience 

than those with which they have worked relatively little. Moreover, the observed relationship-

 
36 Each producer-rig pair’s relationship duration is calculated from the SB data as the difference between the first 
and last day the pair is observed. This calculation drops the first year of SB data (1990) to avoid pairs that began 
work prior to the start of the sample. The total number of pairs in the regression is 6,996, and some pairs are 
observed multiple times due to the field fixed effects. These fixed effects are important because they control for 
geologic factors that might influence both contract choice and relationship duration. A similar regression that uses 
only one observation per producer-rig pair and omits field fixed effects has 5,054 observations and yields an 
estimated effect of 2.5% that is statistically significant at the 1% level. 
37 Column (7) of Table V verifies that the finding of accelerated learning under dayrate contracts from column (5) is 
robust to the inclusion of an interaction between relationship duration and producer-rig joint experience. 
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specific learning appears to be driven primarily by the accumulation of personal interactions 

between the firms’ personnel, rather than by just the accumulation of field or firm-specific 

technical knowledge. 

These results seem likely to generalize to other industries in which outsourcing is 

common. For example, construction contractors or management consulting firms may develop 

relationship-specific intellectual capital through joint work experience with their clients. The 

importance of relationship-specific learning presumably varies with industry and firm 

characteristics. Greater technical complexity in an industry’s production process, for example, 

could drive steeper learning curves than those documented in this paper.  

Firms may also be able to take actions that influence their rate of relationship-specific 

learning. To deepen interpersonal relationships, a lead firm might embed some of its employees 

within the organizations of its contracting partners, or a contractor might set up offices near its 

clients. To the extent that these actions are costly, it may be in the firms’ interests to develop 

contracting arrangements that alleviate ex post bargaining problems and promote efficient 

investment. These personnel and contracting implications of relationship-specific learning are 

potentially valuable subjects for future research.  
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Min
25th 

percentile Median
75th 

percentile Mean Max

Number of wells per field 2 2 4 10 14.1 784
Number of wells per producer 2 3 7 20.5 27.1 630
Number of wells per rig 2 4 8 19 14.1 157

Number of producers per field 1 1 2 3 2.9 54
Number of fields per producer 1 1 3 6 5.5 124
Number of rigs per driller 1 1 3 6 7.7 194

Table I
Distributions of Wells, Fields, Producers, and Rigs

Notes : Data on wells, fields, and producers come from the Texas Railroad Commission (TRRC). Data identifying rigs and 
drilling companies come from Smith Bits (SB). Data shown include wells drilled from 1991-2005 that successfully merged 
across the TRRC and SB data. This merge is summarized in Section IV and described in more detail in the Online Appendix.
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Number of 
observations Min Median Mean

Std. 
Dev. Max

Drilling time (days) 19,059 2 18 23.0 19.2 179
Well depth (feet) 19,059 631 9,000 9,036.0 2,817.0 23,000
Gas well (0/1 dummy) 19,059 0 1 0.6 0.5 1
Oil and gas well (0/1 dummy) 19,059 0 0 0.0 0.0 1

Number of wells drilled during 
the past two years in:

Same field, same producer 19,059 1 7 22.1 51.3 711
Same field 19,059 1 23 91.5 193.3 1,847
Same producer 19,059 1 66 148.1 184.6 1,108

Number of weeks of drilling 
within past two years by:

Same rig 19,059 1 65 60.8 30.5 105
Same rig, same producer 19,059 1 14 27.7 31.0 105

Table II
Sample Summary Statistics

Notes : Data on wells, fields, producers, drilling time, and well characteristics come from the Texas Railroad 
Commission (TRRC). Data identifying rigs and drilling companies come from Smith Bits (SB). Data shown 
include wells drilled from 1991-2005 that successfully merged across the TRRC and SB data. This merge is 
summarized in Section IV and described in more detail in the on-line appendix. See Section V.B for details 
regarding the construction of the experience variables.
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(1) (2) (3) (4) (5) (6) (7)

Log of experience with:
Reference 
case model

No producer-
rig fixed 
effects Splines

Field variables 
only

Field variables 
with Rig FE

Field variables 
with 

forgetting

All variables, 
with 

forgetting

-0.009 -0.010 -0.001 -0.010 -0.002 -0.011
(0.012) (0.007) (0.008) (0.007) (0.008) (0.007)

0.003 -0.015 -0.015   -0.024
**

-0.016 -0.016
(0.020) (0.011) (0.011) (0.011) (0.011) (0.011)

   -0.023
***

   -0.022
***

   -0.038
***

   -0.032
***

   -0.048
***

   -0.040
***

(0.007) (0.006) (0.006) (0.005) (0.007) (0.011)

-0.014    -0.019
*** - - -    -0.020

***

(0.009) (0.006) - - - (0.006)

   -0.019
***

   -0.019
***

   -0.018
*** - - -    -0.016

***

(0.007) (0.004) (0.006) - - - (0.004)

- - - - -   -0.928
**

-2.495
- - - - - (0.443) (1.718)

Notes : Values in parentheses indicate standard errors clustered on producer. *,**,*** indicate significance at the 10%, 5%, and 1% level.

All specifications use 19,059 observations (wells) covering 1991-2005.

All regressions include controls for depth and well type, month and year fixed effects, and field fixed effects.

Measures of field and producer-specific experience E ft, E pt, and E fpt are based on the number of recently drilled wells and are instrumented using the recent number of 

days spent drilling (E ft, E pt, and E fpt) as discussed in Section V.C. Rig and relationship-specific experience E rt and E prt are measured as the recent number of weeks 

spent drilling.

Producer X rig fixed effects Y N Y N N

Y

N

Y Y Y

N Y

Y

N

Rig fixed effects Y Y Y N

Same rig

(E rt )
spline

Same producer, same rig

(E prt )

Forgetting parameter δ  on 

E fpt

Producer fixed effects Y Y Y

Table III
Learning-By-Doing Estimates. Dependent Variable is log(Drilling Time / Well Depth)

Same field, same producer

(E fpt )
spline

Same field

(E ft )
spline

Same producer

(E pt )
spline

^

^

^ ^ ^ ^ ^



 38 

 
 
 
 
 
 
 
 
 

 

(1) (2) (3) (4) (5)

   -0.061
***

-    -0.059
***

    -0.067
***

0.036
(0.012) - (0.011) (0.024) (0.052)

- -0.008 - - -
- (0.017) - - -

Notes : Marginal effects are calculated at the sample means.

Values in parentheses indicate standard errors clustered on producer.

*,**,*** indicate significance at the 10%, 5%, and 1% level.

All specifications use 907 "pairs" in which a producer has two rigs drilling wells for it in the same county.

Conditional logit

Y

N N N N YRig X producer fixed effects

Table IV
Estimates for the Probability that a Rig is the First to Exit its Pair

Values Shown are Marginal Effects: dPr(ExitFirst) / dX

Pair FE N/A N/A Y Y Y

Linear probability model

Log of rig's total experience

(E rt )

Log of rig's producer-specific 

experience (E prt )

Rig FE N N N Y

^

^
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(1) (2) (3) (4) (5) (6) (7)

Log of experience with:
Reference 
case model

Drilling 
company 

experience

Field-
producer-rig 
experience

Contract 
type

Contract 
type, 

controls

Contract 
type, field 
FE X Exp

Contract type, 
duration 
control

-0.009 -0.010 -0.008 -0.009 -0.009 0.005 -0.010
(0.012) (0.012) (0.012) (0.012) (0.012) (0.011) (0.012)

0.003 0.005 -0.002 0.001 0.009 0.005 0.010
(0.020) (0.022) (0.020) (0.020) (0.021) (0.023) (0.021)

   -0.023
***

   -0.022
***

 -0.015
*

   -0.023
***

   -0.024
***

   -0.027
***

   -0.024
***

(0.007) (0.007) (0.008) (0.007) (0.007) (0.007) (0.007)

-0.014  -0.019
*

-0.013 -0.012 -0.012   -0.022
**

-0.011
(0.009) (0.010) (0.012) (0.009) (0.009) (0.011) (0.009)

   -0.019
***

  -0.017
*

-0.004 -0.012 -

(0.007) (0.009) (0.012) (0.007) -

- - -0.001 - - - -

- - (0.015) - - - -

- - -0.019 - - - -

- - (0.016) - - - -

- 0.018 - - - - -

- (0.015) - - - - -

- -0.005 - - - - -

- (0.010) - - - - -

- - - 0.022 0.022 0.028 0.022
- - - (0.016) (0.016) (0.017) (0.016)

Interaction of log(E prt ) with:

- - -   -0.017
**

 -0.017
*

-0.016  -0.016
*

- - - (0.008) (0.010) (0.012) (0.010)

- - - - 0.007 - 0.007
- - - - (0.011) - (0.011)

- - - -    -0.090
*** -    -0.089

***

- - - - (0.033) - (0.034)

- - - - -0.004 - -0.003
- - - - (0.008) - (0.008)

- - - - 0.004 0.006 0.005
- - - - (0.004) (0.005) (0.004)

- - - - 0.001 -8.4E-05 0.002
- - - - (0.003) (0.004) (0.004)

- - - - - - -0.009
- - - - - - (0.006)

Notes : Values in parentheses indicate standard errors clustered on producer. *,**,*** indicate significance at the 10%, 5%, and 1% level.

All specifications use 19,059 observations (wells) covering 1991-2005.

All regressions include controls for depth and well type, month and year fixed effects, field fixed effects, and producer X rig fixed effects.

Log(driller size)

spline

N

Measures of field and producer-specific experience E ft, E pt, and E fpt are based on the number of recently drilled wells and are instrumented using the recent 

number of days spent drilling (E ft, E pt, and E fpt) as discussed in Section V.C. Rig and relationship-specific experience E rt and E prt are measured as the recent 

number of weeks spent drilling.

NY

Log(total duration of 
relationship)

Log(producer size)

Field's std. dev. of 
log(drilltime)

Log(well depth)

Interactions of field fixed 

effects with E prt
N N NN

Fraction of work on dayrate 
(α )

Field's average log(drilltime)

Table V
Empirical Analysis of Learning-By-Doing Mechanisms. Dependent Variable is log(Drilling Time / Well Depth)

Same field, same rig

(E frt )

Same field, same producer, 

same rig (E fprt )

Dayrate contract dummy

Same field, same producer

(E fpt )

Same field

(E ft )

Same producer

(E pt )

Same rig

(E rt )

Same producer, same rig

(E prt )

Same producer, same drilling 

company (E pdt )

Same drilling company

(E dt )

spline

^

^

^

^

^

^

^

^

^ ^ ^ ^ ^
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            Figure I 
             Estimated Spline for Relationship-Specific Learning 

 
Both the spline and log-log estimates of the impact of joint producer-rig experience ˆ( )prtE  are from a 

model in which all other forms of experience are modeled as splines. 
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Figure II 
Likelihood that the Least Experienced Rig is the First to Change Producers 

vs. the Within-Pair Difference in Rigs’ Producer-Specific Experience 
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Online Appendices for “Learning by Drilling: Inter-Firm Learning and 
Relationship Persistence in the Texas Oilpatch” 

by Ryan Kellogg 

Appendix 1 

The empirical analysis requires a well-level dataset in which each observation reports the 

well’s drilling time, location, producer, and drilling rig. I construct this dataset by merging the 

SB rig location data into the TRRC’s well-level drilling records. Unfortunately, a large fraction 

of wells in the TRRC data cannot be matched to rig information in the SB data. Match failures 

occur for four reasons. First, some wells in shallow fields are drilled in less than one week and 

may therefore not be drilled on a Friday. Such wells have no corresponding record in the SB data 

and are therefore impossible to match. Although these wells constitute only 6 percent of the 

overall population, it is possible that this selection on the dependent variable may bias the 

results. I address this concern by estimating (4) and (5) with data only for wells that are at least 

8000 feet deep (12,128 observations). Such wells are essentially impossible to drill in less than 

one week, and estimation with this sub-sample neutralizes the potential selection problem. 

Results, presented in column (2) of table A3, are similar to those obtained from the full sample, 

shown in column (1). 

Second, 14.8 percent of the TRRC wells do not match because the producer names in the 

TRRC data do not always agree with the producer names in the SB data. Often, two names are 

similar only in part, and it is difficult to discern whether the two names do in fact point to the 

same firm. I use information on firm addresses, officer names, and drilling frequency to carefully 

match some similar names; however, I leave ambiguous cases unmatched to avoid the risk of 

matching firms that are, in fact, distinct. 

Third, 27.7 percent of the TRRC wells do not have a match because the SB data are not 

as comprehensive as the TRRC data: SB records 23.3 percent fewer drilling-weeks than does the 

TRRC. These match failures do not appear to be systematic; in particular, their incidence is not 

significantly correlated with wells’ drilling times, the primary dependent variable of the analysis. 

Specifically, I regress a flag for whether each TRRC observation matched at least one SB 

observation on the log of the well’s drilling time and a set of field-by-producer fixed effects. The 

point estimate on the log of drilling time is -0.0085—small in magnitude—with a standard error 

of 0.0060. 
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Finally, some non-unique matches occur when a producer employs multiple drilling rigs 

simultaneously in the same county. Because the SB data do not contain field or well information, 

I am unable to distinguish which rig is drilling which well in such cases. While I am able to use 

information on well depth and well type to match some of these wells to their rigs, there are 

other cases in which there is no way to confidently match the data. I drop all wells that cannot be 

matched uniquely, reducing the dataset by a further 20.4 percent of the original TRRC well 

count. 

 

Appendix 2  

This appendix verifies the robustness of the reference case relationship-specific learning 

result (column (1) of tables III and A3) to a series of alternative specifications and variable 

definitions, the results of which are reported in table A3.1 Column (3) considers a specification in 

which ˆ
rtE  is replaced by ˆ

prtE , which measures the experience of rig r with producers other than 

p. In this regression, the importance of relationship-specific learning is given by the difference 

between the coefficients on ˆ
prtE  and ˆ

prtE . I estimate this difference to be equal to -0.021, very 

similar to the -0.019 estimate on ˆ
prtE  in the reference case and statistically significant with a p-

value of .019. 

The results reported in the main text measure field and producer experience using Eft, Ept, 

and Efpt: the number of wells drilled within two years of date t. Table A3, column (4), presents 

the results of estimating an alternative specification in which these experience variables are 

measured directly by ˆ
ftE , ˆ

ptE , and ˆ
fptE : the number of days of drilling within two years of date 

t. The estimated relationship-specific learning effect is not substantially affected by this change. 

The importance of the producer’s field-specific experience, however, is diminished relative to 

the reference case model. The source of this change may be that, if Efpt is a better reflection of 

the process by which learning occurs, then fptÊ  measures experience with error and the point 

estimate in column (4) reflects attenuation bias.  

Column (5) estimates the model without instrumenting for Eft, Ept, and Efpt with ˆ
ftE , ˆ

ptE , 

and ˆ
fptE . As expected, the difference between the reference case and non-instrumented estimates 

of the coefficients on Eft, Ept, and Efpt are not substantial. These results reinforce the intuition that 

the bias generated by serial correlation in the disturbance εfprt is minor. Moreover, the estimated 

                                                 
1 For additional specifications and robustness tests, see Kellogg, Ryan, "Learning by Drilling: Inter-Firm Learning 
and Relationship Persistence in the Texas Oilpatch," NBER Working Paper #15060. 
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relationship-specific learning effect is not substantially affected by using a least squares rather 

than instrumental variables estimator. 

Finally, I verify that the results are robust to changes in the length of time over which I 

calculate the experience variables. The results in columns (6), (7), and (8) calculate experience 

over one, three, and five years, respectively, rather than the reference case of two years. At the 

one-year horizon, the point estimate on ˆ
prtE  is reduced to -0.011, though it is still statistically 

significant with a p-value of .057. At three and five year horizons, the estimated relationship-

specific learning rate is actually stronger than that estimated in the reference case.2  
 

Appendix 3 

This appendix examines the determinants of whether producers and rigs choose to work 

together under dayrate or footage contracts. I focus on three sets of factors: those related to the 

geologic risk and difficulty of drilling in a particular field, those related to the risk appetite of 

each firm, and those related to the number of previous interactions between the producer and the 

rig. Factors relating to geologic risk are measured using three variables: the average (across all 

producers) of log(drilling time) across all wells drilled in the field, the standard deviation (across 

all producers) of log(drilling time) across all wells drilled in the field, and the depth of the well 

being drilled. The firms’ risk appetites are measured using proxies for firm size: the log of the 

total number of well-weeks of drilling observed in the sample by each producer and drilling 

company. Finally, I measure previous interactions using the log of each producer-rig pair’s joint 

experience: ˆ
prtE . 

For each drilled well in the sample, I regress the binary choice of contract on all six 

variables and report the estimation results in column (1) of table A4. As with the learning 

regressions in the main text, standard errors are clustered on producer to address 

heteroscedasticity and serial correlation. The three measures of geologic difficulty and risk are 

all estimated to be associated with a greater frequency of dayrate contracting, as expected. 

Relatively large producers are estimated to be more likely to use dayrate contracts, and the 

likelihood of dayrate contracting is also found to increase with the number of previous 

interactions between the producer and the rig. All of these results are aligned with the findings of 

Corts and Singh (2004) for offshore drilling in the Gulf of Mexico. The one finding that diverges 

from that paper is that relatively large drilling companies tend to also favor dayrate contracts. A 

                                                 
2 The number of observations for these estimates is reduced because calculating experience over more than two 
years requires dropping observations that occur early in the sample. 
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theory of risk allocation would predict the opposite effect. One story that could explain this result 

is that relatively large firms have well-known reputations for being efficient drillers; thus, 

producers do not need to use footage contracts when working with them. Instead, they use 

dayrate contracts that are less costly to write and induce faster learning. 

The estimates in table A4, column (1), must be interpreted with caution because they are 

subject to the criticism of Ackerberg and Botticini (2002). If there are unobserved characteristics 

of firms (such as the portion of their risk tolerance that is not captured by the firm size variables) 

that are correlated both with their choice of contract type and field in which to work, then the 

estimated coefficients on the variables measuring geologic risk may be biased. Similarly, if fields 

have unobserved characteristics that are not captured by the observed variables, then the 

estimated coefficients on the firm size variables that proxy for risk appetites may be biased.  

To address these concerns, I use fixed effects estimators that control for these unobserved 

characteristics, under the assumption that the characteristics are constant over the sample. Table 

A4, column (2), estimates the influence of firm size on contract choice in the presence of field 

fixed effects, and still finds that both large producers and large drillers are more likely to choose 

dayrate contracts. The finding that dayrate contracts are more likely late in a relationship is also 

robust to these fixed effects. Column (3) replaces the field fixed effects with producer-driller 

fixed effects. Here, I still estimate that relatively deep wells are more likely to be drilled under a 

dayrate contract—the estimated coefficient actually increases substantially in magnitude, from 

0.022 in column (1) to 0.186 in column (3). Because field depth is strongly correlated with 

drilling times, this increase in the depth coefficient leads the estimated coefficient on fields’ 

average drilling times to be negative and marginally statistically significant with a p-value of 

.128. The coefficient on the standard deviation of drilling times is still positive, though 

attenuated in magnitude and statistically distinct from zero with a p-value of only .158. Repeated 

contracting is still estimated to significantly increase the likelihood that a dayrate contract is 

used. Overall, these fixed effects estimates indicate that the baseline results from column (1) 

were not wholly driven by matching on unobserved characteristics, though accounting for this 

matching does affect which particular field-level variables are estimated to be the most important 

drivers of contractual form. 
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(1) (2) (3)

Log of experience based on drilling 
time: Same field (E ft ) Same producer (E pt )

Same field, same 

producer (E fpt )

     0.511
***

0.002 0.013
(0.012) (0.006) (0.012)

     0.049
***

     0.685
***

     0.087
***

(0.015) (0.031) (0.023)

     0.012
***

   0.006
**

     0.439
***

(0.004) (0.003) (0.010)

0.012 -0.009 -0.007
(0.009) (0.009) (0.013)

    0.020
***

    0.039
***

    0.065
***

(0.005) (0.006) (0.009)

Number of observations 19059 19059 19059

Notes :  Values in parentheses indicate standard errors clustered on producer. *,**,*** indicate significance at the 10%, 5%, and 1% level.

All specifications use 19,059 observations (wells) covering 1991-2005.

Table A1

First stage regressions for field and producer experience variables E ft , E pt , and E fpt

Same field

(E ft )

Same producer

(E pt )

Same field, same producer

(E fpt )

Same rig

(E rt )

Same producer, same rig

(E prt )

Dependent variable: log of experience based on well counts

All regressions include controls for depth and well type, month and year fixed effects, field fixed effects, and producer X rig fixed effects.

^

^

^

^

^
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Variable
Point 

estimate Variable
Point 

estimate
Standard 

error

Log of experience with: September dummy 0.017 (0.014)

Same field (E ft ) -0.009 (0.012) October dummy -0.016 (0.016)

Same producer (E pt ) 0.003 (0.020) November dummy -0.010 (0.017)

Same field, same producer (E fpt ) -0.023 (0.007) *** December dummy -0.013 (0.019)

Same rig (E rt ) -0.014 (0.009) 1992 dummy -0.037 (0.037)

Same producer, same rig (E prt ) -0.019 (0.007) *** 1993 dummy 0.001 (0.037)

Well depth / 1000 -0.346 (0.144) ** 1994 dummy -0.020 (0.045)

(Well depth)
2
 / 1,000,000 0.034 (0.013) *** 1995 dummy -0.012 (0.047)

(Well depth)
3
 / 1,000,000,000 -8.9E-04 -3.5E-04 ** 1996 dummy 0.012 (0.052)

Gas well 3.3E-05 (0.025) 1997 dummy -0.004 (0.058)

Oil and gas well 0.201 (0.118) * 1998 dummy 0.024 (0.065)

February dummy -6.1E-04 (0.016) 1999 dummy 0.019 (0.073)

March dummy -0.017 (0.016) 2000 dummy -0.033 (0.070)

April dummy -0.017 (0.018) 2001 dummy -0.010 (0.075)

May dummy -0.027 (0.017) 2002 dummy -0.024 (0.078)

June dummy -0.032 (0.018) * 2003 dummy -0.060 (0.081)

July dummy -0.018 (0.017) 2004 dummy -0.099 (0.082)

August dummy -0.004 (0.015) 2005 dummy -0.099 (0.088)

Notes : Values in parentheses indicate standard errors clustered on producer. *,**,*** indicate significance at the 10%, 5%, and 1% level.

Specification uses 19,059 observations (wells) covering 1991-2005.

Regression includes field fixed effects and producer X rig fixed effects.

Table A2
Learning-by-doing estimates for the reference case model (table IV, column (1)),

including control variables. Dependent variable is log(drilling time / well depth)

Standard 
error

Measures of field and producer-specific experience E ft, E pt, and E fpt are based on the number of recently drilled wells and are 

instrumented using the recent number of days spent drilling (E ft, E pt, and E fpt) as discussed in Section V.C. Rig and relationship-specific 

experience E rt and E prt are measured as the recent number of weeks spent drilling.

^

^

^ ^ ^

^ ^
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(1) (2) (3) (4) (5) (6) (7) (8)

Log of experience with:
Reference 
case model

Wells deeper 
than 8000 

feet

Same rig, other 
producer 

experience

Drilltime-
based 

experience No IV
One-year 

experience
Three-year 
experience

Five-year 
experience

-0.009   -0.026
*

-0.010 -0.005 -0.005 -0.016 -0.013 -0.025
(0.012) (0.015) (0.012) (0.006) (0.011) (0.011) (0.013) (0.017)

0.003 0.019 0.003 -0.001 -0.005 -0.011 0.019 0.031
(0.020) (0.021) (0.020) (0.014) 0.017 (0.016) (0.023) (0.024)

   -0.023
***

   -0.018
**

   -0.022
***

   -0.010
***

   -0.028
***

   -0.025
***

   -0.018
**

   -0.019
***

(0.007) (0.008) (0.007) (0.003) (0.007) (0.007) (0.008) (0.007)

-0.014   -0.019
* - -0.014 -0.015 -0.014 -0.013 -0.010

(0.009) (0.012) - (0.009) (0.009) (0.009) (0.010) (0.011)

   -0.019
***

   -0.017
**

   -0.024
***

   -0.021
***

   -0.017
***

 -0.011
*

   -0.023
***

   -0.027
***

(0.007) (0.007) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007)

- - -0.004 - - - - -

- - (0.005) - - - - -

Number of observations 19059 12128 19059 19059 19059 19059 17891 15515

Notes : Values in parentheses indicate standard errors clustered on producer. *,**,*** indicate significance at the 10%, 5%, and 1% level.

All specifications use 19,059 observations (wells) covering 1991-2005.

All regressions include controls for depth and well type, month and year fixed effects, field fixed effects, and producer X rig fixed effects.

Other producer, same rig

(E -prt )

Table A3
Empirical analysis of learning-by-doing: robustness. Dependent variable is log(drilling time / well depth)

Same field, same producer

(E fpt )

Same field

(E ft )

Same producer

(E pt )

Same rig

(E rt )

Same producer, same rig

(E prt )

Measures of field and producer-specific experience E ft, E pt, and E fpt are based on the number of recently drilled wells and are instrumented using the recent number of days 

spent drilling (E ft, E pt, and E fpt) as discussed in Section V.C. Exceptions are column (4), in which  E ft, E pt, and E fpt are used directly as covariates, and column (5), in which  

Eft, Ept, and Efpt are not instrumented. Rig and relationship-specific experience E rt and E prt are measured as the recent number of weeks spent drilling.

^

^

^

^ ^ ^ ^ ^ ^

^ ^
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(1) (2) (3)

No fixed effects Field fixed effects
Producer and driller 

fixed effects

  0.075
** - -0.037

(0.037) - (0.024)

   0.168
*** - 0.045

(0.056) - (0.032)

   0.022
*** -   0.186

**

(0.059) - (0.040)

   0.048
***

  0.049
** -

(0.013) (0.009) -

   0.087
***

   0.076
*** -

(0.009) (0.008) -

   0.032
***

   0.031
***

    0.024
***

(0.008) (0.005) (0.004)

Number of observations 19059 19059 19059

Notes : Values in parentheses indicate standard errors clustered on producer. 

*,**,*** indicate significance at the 10%, 5%, and 1% level.

All specifications use 19,059 observations (wells) covering 1991-2005.

Log(driller size)

Table A4
Empirical analysis of contract choice

Dependent variable is binary: 0 for footage contract, 1 for dayrate

Log of experience within same 

producer and rig (E prt )

Mean log drilling time within field

Std. deviation of log drilling time 
within field

Log(well depth)

Log(producer size)

^


