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Abstract

Output-based carbon regulations—such as fuel economy standards and the rate-
based standards in the Clean Power Plan—create well-known incentives to inefficiently
increase output. Similar distortions are created by attribute-based regulations. This
paper demonstrates that, despite these distortions, output and attribute-based stan-
dards can always yield strictly greater expected welfare than “flat” emission standards
given uncertainty in demand for output (or attributes), assuming locally constant
marginal damages. For fuel economy standards, the welfare-maximizing amount of
attribute or mileage-basing is likely small relative to current policy. For the electricity
sector, however, an intensity standard may yield greater expected welfare than a flat
standard.
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1 Introduction

Environmental economists have long extolled the virtues of Pigouvian taxation or cap-

and-trade pollution permit systems as efficient public policies for correcting environmen-

tal externalities, and especially for addressing carbon emissions. While such programs

have begun to appear—the European Union’s and California’s cap-and-trade programs and

British Columbia’s carbon tax are notable examples—many policies in practice deviate from

economists’ favorite prescription. In the United States, carbon regulations frequently take

the form of output-based standards that express the maximum permissible quantity of emis-

sions (or minimum permissible quantity of a “clean” input) as a function of the output of an

underlying good. These standards often take the specific form of intensity standards that

specify proportionality between emissions and output. For instance, state-level renewable

portfolio standards mandate that renewable electricity generation meet a minimum share of

total generation (or capacity), fuel economy standards mandate a maximum amount of fuel

use in proportion to vehicle miles traveled, and the Obama Clean Power Plan allowed states

to regulate CO2 emissions as a proportion of total electricity generation.

Intensity standards generate well-understood incentives to distort output, as first rec-

ognized in Kwoka’s (1983) analysis of how fuel economy standards lead to the well-known

“rebound effect” that causes an increase in vehicle miles traveled. Holland, Hughes, and

Knittel (2009) makes this point in the context of California’s Low Carbon Fuel Standard,

an intensity standard on the embodied carbon in transportation fuel that creates an incen-

tive to produce more fuel overall, since doing so slackens the constraint on CO2 emissions.

Holland (2012) shows that the same logic extends generally to output-based standards.1

Similar intuition also applies to settings where the emissions standard is a function of goods’

attributes rather than output. For instance, Ito and Sallee (2018) shows that basing fuel

economy standards on vehicles’ weight or footprint results in inefficiently over-sized vehicles.

1Output-based emissions permit allocation schemes, such as that used for some industrial sectors in
California, are an example of an output-based standard that is not an intensity standard.
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In this paper, I ask whether output or attribute-based emissions regulation can actually

deliver strict welfare improvements relative to a “flat” (non-output or attribute-based) emis-

sions standard in the presence of uncertainty about future abatement costs. The intuition

is closely related to Weitzman’s (1974) prices versus quantities results. Assuming that the

marginal damage from carbon emissions is locally constant—a reasonable assumption for a

global stock pollutant like CO2 (Newell and Pizer 2003)—Weitzman’s (1974) logic implies

that a carbon tax “price” policy can achieve the first-best outcome. Under flat cap-and-trade,

however, the quantity of emissions is fixed so that shocks to the economic environment cause

fluctuations in marginal abatement cost. Per Weitzman (1974), this variation reduces welfare

relative to the first-best. The potential virtue of output or attribute-based regulations is then

that they can dampen these marginal abatement cost fluctuations and their associated wel-

fare losses, since emissions are allowed to vary as shocks occur. Indeed, compliance flexibility

was one of the justifications offered for making U.S. fuel economy standards footprint-based

(see, for instance, Lutsey (2015)).

Can the flexibility benefits from output or attribute-based standards outweigh the welfare

losses from the distortions that they impose? To the best of my knowledge, this question

has not been addressed despite the ubiquity of these policies. Holland, Hughes, and Knittel

(2009) briefly notes that intensity standards may yield welfare benefits in an uncertain envi-

ronment, but because the model in that paper is deterministic it does not explore this point

in depth. Similarly, Anderson and Sallee (2016) and Ito and Sallee (2018) raise but do not

answer the question of whether attribute-based fuel economy standards are advantageous

relative to a non-attribute-based standard in the presence of uncertainty.

I begin by building a partial equilibrium model in which there is a single good, the

production or consumption of which is associated with CO2 emissions. CO2 emissions have

a constant external marginal cost as well as private costs and benefits (e.g., increases in

emissions may be associated with larger fuel costs and lower expenditures on energy-efficient

capital). Consumers and producers in equilibrium choose both the emissions level and either
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the good’s quantity or the value of one of its attributes. The model can therefore address

emissions standards that are a function of output (like the Low Carbon Fuel Standard)

and standards that are a function of an attribute (like footprint-based U.S. fuel economy

standards). Thus, output and attribute-based standards are in fact conceptually equivalent,

a point that has gone unnoticed in prior work.

Agents’ demand for output and emissions in the model is affected by two exogenous

shocks that are uncertain when the regulator sets its policy. First, there may be direct

shocks to marginal abatement cost—agents’ willingness to pay for emissions reductions—

holding output (or attributes) fixed. Fuel prices are perhaps the most salient example of

this form of uncertainty. Second, there may be shocks to the marginal value of the good’s

output or attribute, holding emissions fixed. For instance, income shocks may lead agents

to want to consume more electricity, more miles traveled, or larger vehicles. These shocks

lead indirectly to uncertainty about marginal abatement cost, since marginal abatement cost

typically increases with output, holding emissions fixed.

Under a flat emissions standard, either form of uncertainty leads to an expected welfare

loss relative to the first-best, since marginal abatement cost diverges from marginal dam-

age. The first-best welfare outcome can be achieved by a Pigouvian tax or by an emissions

standard that is indexed directly to the exogenous source of uncertainty (gasoline prices,

for example, as shown in Kellogg (2018)).2 But what happens to expected welfare if the

emissions standard is instead a function of the endogenously-determined output or attribute

of the good, as is common in current policy?

I show that the welfare properties of output or attribute-based standards depend crucially

on which type of uncertainty is present. If uncertainty is due only to shocks to marginal

abatement cost, basing an emissions standard to the good’s output or attributes always

strictly reduces welfare relative to a flat standard. This result is a generalization of the

2Pizer and Prest (forthcoming) shows that the first-best outcome can also potentially be achieved using
a non-indexed emissions standard with retroactive quantity updating and banking and borrowing provisions
that extend beyond the policy revision horizon.
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finding in Kellogg (2018) that an attribute-based fuel economy standard strictly reduces

welfare when the only source of uncertainty is the future price of gasoline. The intuition

for this result stems from the fact that both the welfare cost of the distortion to the good’s

output or attribute and the welfare benefit from increased flexibility are second-order. I

show that the former effect dominates.

When there are shocks to the marginal value of output, however, expected welfare can

always be strictly increased by at least a small amount of output-basing (the same argument

holds for attributes). This result is driven by the fact that the flexibility benefits of an

output-based standard are now first-order, while the welfare costs of the induced distortions

remain second-order. I show that the optimal amount of output-basing increases with: (1)

uncertainty in future output (relative to the magnitude of the unpriced externality); (2)

the extent to which emissions are affected by output shocks in the absence of regulation;

and (3) the inelasticity of output with respect to the good’s cost. It is, moreover, possi-

ble that an intensity standard yields greater expected welfare than a flat standard. Still,

even an optimally-set output or attribute-based standard is a second-best policy solution: a

Pigouvian tax remains first-best because it maintains compliance flexibility while avoiding

distortions to output or attributes.

Is this possibility result important in practice? I quantitatively evaluate the welfare ef-

fects of output and attribute-standards by calibrating the model to three policy settings:

(1) an attribute-based fuel economy standard (holding miles traveled fixed); (2) a fuel econ-

omy standard with endogenous miles traveled (holding vehicle attributes fixed); and (3) an

output-based CO2 standard for electric generation. In each case, I calibrate the model using

estimates from previous studies, and I estimate uncertainty in the net demand for output

and attributes using their historic volatility.

I find that, even with generous parameter assumptions and estimates of uncertainty

in the demand for vehicle size, the U.S. footprint-based fuel economy standard yields lower

expected welfare than a “flat” non-attribute based standard, and that the welfare-maximizing
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footprint-based standard is nearly flat. Similarly, when I treat miles driven as endogenous,

I find that a regulation imposing a ceiling on total gasoline consumption yields greater

expected welfare than a fuel economy standard. These results are mostly driven by the

fact that uncertainty about the future demand for miles traveled, and especially about the

demand for vehicle size, is fairly small.

In contrast, I find that the welfare-maximizing emissions standard for the U.S. electricity

market is substantially output-based. Depending on parameter inputs, an intensity standard

may even deliver greater expected welfare than a flat standard. This result is driven by the

large uncertainty about the future demand for electric power and by the fact that emissions

vary substantially with output shocks. These industry features are also documented in

Borenstein et al. (2019), which finds substantial uncertainty in the future business-as-usual

emissions path for California’s electricity sector.

My result that output and attribute-based standards can increase expected welfare re-

lates to other work that has raised normative justifications for intensity standards. Holland

(2012) and Fowlie, Reguant, and Ryan (2016), for instance, show that in the presence of

market power or unregulated emissions in substitute sectors, intensity standards can welfare-

dominate a flat standard (or a Pigouvian tax), since the implied subsidy to output mitigates

the pre-existing market distortions. This paper can be viewed as an extension of this second-

best logic to settings where flat standards (though not Pigouvian taxes) fail to achieve the

first-best due to uncertainty in the economic environment.

This paper also relates to previous research that has studied intensity targets. Ellerman

and Wing (2003), Quirion (2005), Newell and Pizer (2008), Heutel (2012), and Zhao (2018)

consider the consequences of indexing aggregate CO2 emission limits to GDP and conclude

that indexing can improve expected welfare relative to a non-indexed policy.3 This literature,

unlike the modeling framework I develop here, models intensity targets such that they do

3Indexed regulation is not always superior to non-indexed regulation in these papers because they model
either an upward-sloping marginal damage function (appropriate for local pollutants or for global, long-run
CO2 regulation) or noise in GDP measurements that is not associated with emissions.
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not generate output distortions. Zhao (2018), for instance, models a policy that adjusts

an aggregate emissions cap each year in response to GDP shocks but is implemented as

a standard cap-and-trade program, so that firms do not have an incentive to distort their

output. Such a policy would dominate the distortion-inducing regulations that I model here.

In practice, however, emissions standards are overwhelmingly indexed to quantities and

attributes that are manipulable by firms or consumers rather than to exogenous variables

such as GDP or fuel prices. Renewable portfolio standards, energy efficiency standards, fuel

economy standards, the Clean Power Plan, and California’s Low Carbon Fuel Standard all

generate incentives to distort output or goods’ attributes.

The paper proceeds as follows. Section 2 introduces the modeling framework, and then

section 3 delivers the main theoretical results of the paper: output or attribute-based emis-

sions standards never increase expected welfare when only the marginal abatement cost is

uncertain, but they do improve welfare relative to a “flat” standard when the marginal value

of output (or an attribute) is uncertain. Section 4 examines the quantitative implications of

this result in three policy applications. Section 5 concludes.

2 Model setup

This section introduces the model that I use throughout the paper. The model is similar

to that in my previous work on fuel economy and gasoline price uncertainty (Kellogg 2018).

Because the main objective of the model is to distill intuition, I abstract away from other

potential market failures such as market power, emissions leakage, incomplete information,

or other taxes or regulations, any of which could on its own justify attribute or output-basing

as a second-best policy.4

4Ito and Sallee (2018), for instance, includes a discussion of how other market distortions might provide
an efficiency justification for attribute-based fuel economy standards, noting that vehicle accident external-
ities actually imply efficiency gains from taxing vehicle size (which “reverse” attribute-based fuel economy
standards—in which larger vehicles face a tougher standard—would implicitly do), since accident externali-
ties increase with vehicle size. One pre-existing distortion that I consider explicitly in appendix A.6 is the case
of whether to attribute-base a standard that is already output-based, in the presence of uncertainty about
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The model considers a single carbon-emitting good that is supplied by competitive firms

and demanded by price-taking, fully-informed consumers. In what follows, I frequently refer

to firms and consumers collectively as “agents”. The exposition below is framed in terms of

agents’ choices over the good’s quantity, but with a simple re-labeling (replace every “Q”

with an “A”), the model could instead apply to choices over one of the good’s attributes.

2.1 Private agents’ supply, demand, and equilibrium

The good’s overall output (and consumption) is given by Q, and CO2 emissions are denoted

by E. Agents’ choices of Q and E are affected by two additional variables: η and F . η

denotes factors that shift preferences for (or costs of) additional output Q, and F denotes

factors that affect the private costs of additional emissions E.

The model is designed to be as general as possible regarding the specific objects rep-

resented by Q, E, η, and F . But to briefly fix ideas, the three applications considered in

section 4 will use them to represent:

1. Attribute-based fuel economy standards: Q denotes the average footprint of

vehicles sold, E denotes the average fuel economy of vehicles sold, η represents taste

or income shocks that affect the marginal value of footprint, and F denotes the price

of fuel. Miles traveled are fixed.5

2. Fuel economy standards with endogenous miles traveled: Q denotes average

lifetime miles traveled per vehicle, E denotes lifetime average gasoline use per vehicle,

η represents taste or income shocks that affect the marginal value of driving, and F

denotes the price of fuel. Vehicle attributes are fixed.

future fuel prices. In that case, the pre-existing distortion would likely provide an efficiency justification for
reverse attribute-basing, since doing so would partially mitigate the output distortion.

5An attribute-based fuel economy standard is properly modeled as an emissions standard that is both
output-based (since total emissions can vary with miles driven) and attribute-based. Fully modeling the
dependence of an emissions standard on both output and an attribute simultaneously is beyond the scope of
this paper. My main analysis therefore considers output and attribute-basing one at a time rather than jointly
(and therefore treats attribute-based fuel economy standards and fuel economy standards with endogenous
miles traveled as separate applications) Appendix A.6 does, however, extend the results presented in section
3.1 to consider the welfare implications of attribute-basing a standard that is already output-based.
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3. Electricity generation: Q denotes total electricity consumption, E denotes total

CO2 emissions, η represents taste or income shocks that affect the marginal value

of electricity, and F denotes the relative price of high-emission versus low-emission

generation fuels.

Similar to Kellogg (2018), I posit an aggregate, private net benefits function B(Q,E, η, F )

that captures the difference between consumers’ utility (not including any externalities) and

firms’ production cost.6 I denote the marginal net benefits of output Q and emissions E by

the partial derivatives BQ(Q,E, η, F ) and BE(Q,E, η, F ).

I assume that there are diminishing net returns to both Q and E so that BQ(Q,E, η, F )

andBE(Q,E, η, F ) are positive at low values ofQ and E but negative for largeQ and E. That

is, I assume that the second derivatives BQQ(Q,E, η, F ) and BEE(Q,E, η, F ) are both strictly

negative. For instance, consumers receive declining marginal utility from miles driven, and

reducing vehicles’ fuel use per mile becomes increasingly costly as vehicles become more and

more fuel efficient. I also assume that the cross-partial derivative BQE(Q,E, η, F ) ≥ 0 to

reflect the fact that in most applications, reducing emissions is more costly for large Q than

for small Q (starting from the same initial emissions level E).

η should be thought of as a scalar income or preference shock that affects demand for

output Q, though it could also represent a marginal production cost shifter. I sign η as

a “positive” shock, so that the cross-partial derivative BQη(Q,E, η, F ) > 0. η does not

affect the marginal value of emissions E (conditional on Q), however, so the cross-partial

BEη(Q,E, η, F ) = 0. F should be thought of as the price (= marginal cost) of carbon-

6I show in appendix A.2 that B(Q,E, η, F ) can be micro-founded as a summation of individual agents’
private benefit functions, and that it will be a sufficient statistic for utilitarian total private welfare under the
regulations I consider given: (1) restrictions on heterogeneity in agents’ valuations of Q and E; (2) inclusion
of compliance credit trading in any emissions standard (as is the case in the United States for renewable
portfolio standards, fuel economy standards, renewable fuel standards, and the California Low Carbon Fuel
Standard); and (3) equal and constant welfare weights and marginal utility of income across all agents (per
Kaplow (2012), this last condition can be relaxed if welfare weights vary only according to wage-earning
ability and agents’ utility functions are weakly separable in labor effort, in which case non-linear income
taxes can be used to redistribute instead). Ito and Sallee (2018) shows that if this last condition is violated,
then redistribution may provide a motivation for attribute-basing. I return to the question of distributional
motivations in this paper’s conclusion.
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intensive fuel, where increased fuel prices decrease the net marginal benefit from emissions,

so that BEF (Q,E, η, F ) < 0. F could also, in principle, represent the state of firms’ emissions

control technology. Conditional on E, changes in F do not affect the marginal value of Q,

so that BQF (Q,E, η, F ) = 0.7

In the absence of regulation, agents in equilibrium will choose Q and E, given η and

F , so that the private first-order conditions (FOCs) are satisfied: BQ(Q,E, η, F ) = 0 and

BE(Q,E, η, F ) = 0.8 As shown in appendix A.1, the implicit function theorem then yields an

intuitive set of comparative statics for how the equilibrium Q and E are affected by shocks

to η and F : dQ/dη > 0, dQ/dF ≤ 0, dE/dη ≥ 0, and dE/dF < 0 (with all inequalities

strict iff BQE > 0).

Finally, I follow Weitzman (1974) by assuming thatB(Q,E, η, F ) can be well-approximated

by a second-order Taylor expansion. This assumption substantially enhances the analytic

tractability of the model (for instance, the comparative static derivatives above all become

constants), and I maintain it throughout the paper, henceforth writing all second derivatives

as, for example, BQQ rather than BQQ(Q,E, η, F ).

2.2 The externality and regulatory responses

The total external cost of emissions is given by φE, so that marginal damage is equal to

φ, a constant that is proportional to the social cost of carbon.9 The full-information social

7The restriction that F does not directly affect the demand for Q is consistent with an assumption that
consumers have quasilinear utility in fuel expenditures. This assumption is common in empirical vehicle
fuel economy choice models, such as Busse, Knittel, and Zettelmeyer (2013), Allcott and Wozny (2014), and
Sallee, West, and Fan (2016). It is likely violated, however, for the electricity sector, since increases in the
cost of carbon-intensive fuel increase the marginal cost of generation (even holding emissions fixed). Thus,
the electricity application discussed in section 4.3 must account for the fact that some of the variation in F
also manifests effectively as variation in η, as discussed in more detail in appendix B.3.

8The second order condition (SOC) sufficient for an equilibrium is that BQQBEE −B2
QE > 0.

9Per Weitzman (1974), and as in Kellogg (2018), the results of the paper are unchanged if φ is defined as
the expected value of uncertain marginal damages, so long as the stochastic component of marginal damage
is uncorrelated with η or F . In this case, what the paper describes as “first-best” is first-best subject to
incomplete information about marginal damage.
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planner’s problem is then given by:

max
Q,E

B(Q,E, η, F )− φE (1)

The planner’s FOCs are given by BQ(Q,E, η, F ) = 0 and BE(Q,E, η, F ) = φ. Intuitively,

the planner’s solution therefore involves a lower E than the private optimum, and then

conditional on the choice of E the planner chooses the same Q as private agents.

I model the regulator’s problem in two stages. In the first stage, the regulator must

commit to a policy without knowing what the realized values of η and F will be in the second

stage. The regulator does, however, have rational beliefs about what the distributions of η

and F will be in stage 2. Then in stage 2 agents choose Q and E given the policy and the

realized η and F .

I model stage 2 as a single compliance period, though it would be straightforward to the

extend the model to multiple compliance periods, each with a different realization of η and

F . Either way, the underlying assumption is that the regulator cannot immediately adjust

the emissions policy in response to realized shocks.10 This assumption is consistent with U.S.

emissions regulation in practice, where many years typically elapse between policy updates.

For instance, the 2012 fuel economy standard revisions were locked-in until at least 2021,

and the Clean Power Plan prescribed emission standards through 2030, despite the potential

for large economic shocks during the intervening years.

3 When do output and attribute-based standards im-

prove expected welfare?

It is easy to show that a Pigouvian tax τ on emissions E achieves the full-information first-

best, since in that case the agents’ welfare maximization problem is identical to that of

10Nor can the regulator retroactively update the policy, as in Pizer and Prest (forthcoming).
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the social planner. What if a tax policy is not available, and the regulator must instead

use an emissions standard? This section considers the welfare effects of an output-based

standard, in which emissions E are constrained to lie below a function µ(Q) of output. I

focus attention on output-based standards that are simple affine functions of output, so that

µ(Q) = µ0 + γQ. This functional form encompasses “flat” standards whenever γ = 0 and

intensity standards whenever µ0 = 0 and γ > 0.

What are the welfare-maximizing levels of µ0 and γ? In particular, is the optimal reg-

ulation output-based, so that γ > 0? I first show that if there is only uncertainty over F ,

then optimal regulation requires γ = 0. The argument follows that in Kellogg (2018) for

why attribute-based fuel economy standards are never optimal in the face of gasoline price

uncertainty. The heart of this section of the paper then considers regulation when there is

uncertainty over η. I show that the welfare-maximizing value of γ is generically non-zero

and will be strictly greater than zero unless η and F have a large positive correlation.

3.1 Optimal standards under uncertainty in F

Suppose that η is fixed and known by the regulator in period 1, so that there is no uncertainty

in the marginal value of Q (I henceforth suppress η in the notation for the remainder of this

subsection). The regulator’s problem is then to choose the standard’s intercept and slope

parameters µ0 and γ to maximize expected welfare:11

max
µ0,γ

∫ FH

FL

(B(Q(µ0, γ, F ), E(µ0, γ, F ), F )− φE(µ0, γ, F ))w(F )dF, (2)

w(F ) denotes the probability density function of F , with support on [FL, FH ].

What are the optimal parameters µ0 and γ? It is useful to begin by building intuition

for agents’ choices of Q and E in the absence of regulation. The black line in figure 1, panel

(a) traces out how agents’ choices of Q and E decrease as F increases from FL to FH . Per

11This subsection closely follows section 6 in Kellogg (2018), replacing a from that paper with Q, and
replacing G with F .
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the comparative statics in appendix A.1, the locus of points {(Q(F ), E(F ))} is a straight

line in Q,E space, with a slope of −BQQ/BQE.

Panel (a) of figure 1 also depicts the socially optimal points {(Q∗(F ), E∗(F ))}. At the

social optimum, agents internalize the externality φ. The effects of doing so on Q and E are

equivalent to an increase in F , so for any realized F the socially optimal (Q∗(F ), E∗(F )) is

simply a southwestward shift—following along the original locus of choices—from the pri-

vately optimal (Q(F ), E(F )). One way to then think about the planner’s problem, equation

(2), is that the goal is to choose values of µ0 and γ that minimize the distance, averaged over

possible realizations of F , between the socially optimal {(Q∗(F ), E∗(F ))} and the choices

{(Q(µ0, η, F ), E(µ0, η, F ))} induced by the policy.

Figure 1, panel (b) imposes a “flat” non-output-based standard, for which the slope

γ equals zero and the intercept µ0 is set to the value µ∗ that maximizes expression (2),

conditional on γ = 0. Let F̂ (µ∗) denote the highest fuel price at which this standard binds

(i.e., for F > F̂ (µ∗), agents will voluntarily choose to emit E < µ∗). Kellogg (2018) shows

that at the optimal µ∗, the expected marginal abatement cost, conditional on the standard

binding, equals marginal external damage. That is, µ∗ satisfies:

1

W (F̂ (µ∗))

∫ F̂ (µ∗)

FL

BE(Q(µ∗, F ), µ∗, F )w(F )dF = φ, (3)

where W (F ) is the cumulative distribution function of F . The integrand in (3) represents

the marginal abatement cost of meeting the binding standard, given a realization F ≤ F̂ .

Note that when the flat µ∗ standard binds, agents’ choice of Q is always given by Q∗, as

shown in figure 1, panel (b), regardless of the realization of F .12 Equivalently, the level set

of agents’ private welfare B(Q,E, F ) that corresponds to agents’ optimal choice of Q and E

when constrained by the standard always has a point of tangency at (Q∗, µ∗) for any F ≤ F̂ .

Panel (b) of figure 1 also illustrates why the emissions standard, even if set optimally,

falls short of the social optimum. If the realized F is sufficiently large that the standard

12This result follows from the construction that BQF = 0.
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Figure 1: Agents’ choices, social optima, and regulations under uncertainty in F

(a) Agents’ unrestricted choices and social optima
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Note: Q denotes the good’s output (or an attribute), and E denotes emissions. When unconstrained by

regulation, agents’ choices lie on the thin upward-sloping black line between the points XL and XH , where

a lower realized fuel price F leads to higher choices of Q and E. The socially optimal set of outcomes

is given by a southwestward shift along this line, so that socially optimal choices lie between X∗
L and

X∗
H . FL and FH denote the lowest and highest possible fuel prices, respectively. The output-based standard

µ(Q) = µ0+γQ binds only for fuel prices less than F̂ (µ0, γ). The planner’s problem is to choose an emissions

regulation that minimizes the distance, averaged over possible realizations of F , between the socially optimal

{(Q∗(F ), E∗(F ))} and the choices induced by the policy. See text for details.

doesn’t bind or just barely binds, the resulting emissions E (and output Q) will be greater

than at the social optimum. If the realized F is low, emissions will be fixed at µ0 even though
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the social optimum calls for a greater emissions rate given the high marginal abatement cost.

Panels (c) and (d) of figure 1 illustrate agents’ choices under an output-based standard

that rotates the flat standard around the point (Q∗, µ∗). When γ > 0, choices of Q and

E now vary with F when the standard binds, since increasing Q allows agents to increase

E. The extent to which Q varies with F is proportional to γ (see appendix A.1 for formal

comparative statics). The extent to which E varies with F is then proportional to γ2, since

when agents are constrained a change in E (induced by a change in F ) is equal to the change

in Q multiplied by γ. Overall then, shocks to F induce little variation in Q and E when γ

is small (panel (c) of figure 1) but substantial variation when γ is large (panel (d)).

The fact that E can vary with F when γ > 0 creates a flexibility benefit because emissions

are allowed to increase—moving closer to the social optimum—when fuel prices are low. This

benefit comes at the cost, however, of distorting Q: output is too high when the standard

binds. This distortion creates a standard Harberger deadweight loss triangle, the size of

which is proportional to γ2 (Ito and Sallee 2018). Thus, both the flexibility benefit and

distortionary cost of output-basing are second-order in γ, the slope of the standard. The

distortionary effect dominates, since the flexibility itself arises only because of the distortion

to Q. The optimal standard is therefore a corner solution: flat, with γ = 0.

Appendix A.3 formally proves that the optimal standard, under uncertainty in F only,

has γ = 0. This appendix also shows that, conditional on setting γ > 0, the optimal intercept

µ0 should vary so that the standard’s “pivot point” is fixed at (Q∗, µ∗), as shown in panels

(c) and (d) of figure 1.13

13The intuition relates to that driving equation (3): the optimal level of the standard should balance
marginal damage with marginal abatement cost, conditional on the standard binding. Output-basing in-
creases marginal abatement cost (accounting for the output distortion), but it also increases the sensitivity
of emissions (and therefore damages) to the level of the standard. These two effects cancel each other out
so that, regardless of the value of γ, the fuel price F̂ at which the optimal standard binds does not change.
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3.2 Optimal standards under uncertainty in η

I now consider optimal regulation under uncertainty in the marginal value of Q, denoted

by η. This subsection assumes that F is fixed and known by the regulator; section 3.3 will

consider uncertainty in both η and F . The regulator’s problem is now given by:

max
µ0,γ

∫ ηH

ηL

(B(Q(µ0, γ, η), E(µ0, γ, η), η)− φE(µ0, γ, η)) v(η)dη, (4)

v(η) denotes the probability density function of η, with support on [ηL, ηH ].

As with subsection 3.1, it is helpful to begin here by building intuition for agents’ equi-

librium choices of Q and E in the absence of regulation (the formal comparative statics are

in appendix A.1). These choices are illustrated in figure 2, panel (a). Both Q and E increase

with η, so that the line denoting agents’ private choices is upward sloping in Q,E space.

However, this line has a flatter slope than was the case under uncertainty in F ; this result

is a consequence of the fact that the uncertainty now directly affects Q rather than E.14

Under uncertainty in F , internalization of the externality φ was isomorphic to an in-

crease in F . This relationship does not hold for η, so that the line denoting socially optimal

{(Q∗(η), E∗(η))} now sits below rather coincident with the line denoting agents’ uncon-

strained choices, as shown in figure 2, panel (a).

Panel (b) of figure 2 illustrates an optimal flat standard, with µ0 = µ∗ so that the marginal

abatement cost, conditional on the standard binding, equals marginal damage. The FOC

that governs this standard is given by equation (5) below, where η̂ denotes the value of η at

which the standard just binds, and V (η) is the cumulative distribution function for η:

1

1− V (η̂(µ∗))

∫ ηH

η̂(µ∗)

BE(Q(µ∗, η), µ∗, η)v(η)dη = φ. (5)

When only F was uncertain, agents’ choice of Q was fixed at Q∗ whenever the flat

14The slope dE/dQ induced by variation in η is −BQE/BEE , while the slope induced by variation in F
is −BQQ/BQE . The former slope is smaller assuming that the SOC for agents’ interior private optimum,
BQQBEE −B2

QE > 0, holds.
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Figure 2: Agents’ choices, social optima, and regulations under uncertainty in η

(a) Agents’ unrestricted choices and social optima
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(d) Intensity standard
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Note: Q denotes the good’s output (or an attribute), and E denotes emissions. When unconstrained by

regulation, agents’ choices lie on the thin upward-sloping black line between the points XL and XH , where

a higher realization of η leads to higher choices of Q and E. The socially optimal set of outcomes is given

by the lower, parallel green line, so that socially optimal choices lie between X∗
L and X∗

H . ηL and ηH

denote the lowest and highest possible realized net demands for Q, respectively. The output-based standard

µ(Q) = µ0 + γQ binds only for values of η greater than η̂(µ0, γ). The planner’s problem is to choose

an emissions regulation that minimizes the distance, averaged over possible realizations of η, between the

socially optimal {(Q∗(η), E∗(η))} and the choices induced by the policy. See text for details.

standard bound, regardless of the realization of F . When only η is uncertain, however, Q

varies linearly with η when the standard is binding, as shown in panel (b) of figure 2 and
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derived in appendix A.1. Intuitively, increases in η (the marginal value of Q) lead agents to

increase Q in equilibrium, holding E fixed at µ∗.

Now consider what happens when the standard is rotated so that it is output-based,

with γ > 0, as shown in figure 2, panel (c). Because Q varied linearly with η even when the

standard was flat, the extent to which E varies with η is now proportional to γ rather than

γ2 (since when agents are constrained, a change in E induced by a change in η is equal to

the change in Q multiplied by γ). Thus, under uncertainty in η the flexibility benefits of

output-based standards are first-order in γ rather than second-order.

In contrast, the welfare loss caused by output-basing’s distortion to Q remains second-

order. Output-based standards—in the presence of uncertainty over the net demand for

output—therefore generate first-order flexibility benefits but only second-order output dis-

tortions, implying that the optimal value of γ strictly exceeds zero. This result is proven

in appendix A.4. Figure 2, panel (c) depicts an optimally-set output-based standard, which

does a better job of minimizing the average distance between agents’ induced choices and

the social optima than does the flat standard in panel (b).15

This model also provides guidance on when a small versus a large amount of output-

basing will be welfare-maximizing. As shown in appendix A.4, the optimal γ, which I denote

γ∗, increases with:

1. The ratio of the volatility of output (induced by the variance of η) to the externality

φ. Intuitively, the flexibility benefits of output-basing are most valuable when the

uncertainty faced by the regulator is economically large.

2. The rate at which unconstrained agents vary E relative to Q in response to shocks to

η. When this slope (given by −BQE/BEE) is large, output shocks can generate large

changes in marginal abatement cost under a flat standard.

15The optimal output-based standard intersects agents’ unconstrained choice line at a lower point than
does the flat standard. This intersection is governed by FOCµ0 (equation (56) in appendix A.4), which
requires that η̂ decrease as γ increases.
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3. The insensitivity of agents’ choice of Q to changes in the cost of Q (conditional on the

variance of output). Intuitively, an inelastic net demand for Q implies small welfare

losses from the distortion to Q induced by output-based regulation.

Finally, it is possible that γ∗ is so large that an intensity standard, which fixes µ0 = 0,

yields greater expected welfare than does a flat standard. For instance, figure 2, panel (d)

depicts an intensity standard that visually yields choices of Q and E that are closer to the

first-best than does a flat standard.

3.3 Uncertainty in both η and F

Finally, consider optimal output-basing when the regulator faces uncertainty in both η and F .

I show in appendix A.5 that the optimal regulatory slope γ∗ then depends on the correlation

between η and F . When η and F are uncorrelated, the results discussed in section 3.2 above

continue to hold, and γ∗ > 0. If the covariance between η and F is positive and sufficiently

large relative to the variance of η, however, the optimal value of γ may be zero or even

negative. Moving in the other direction, a negative correlation between η and F implies an

increase in γ∗ relative to the case when they are uncorrelated.

The intuition behind these results flows from the fact that when F is correlated with η,

an output-based standard provides a means for the regulator to index the standard to F .

That is, variation in output becomes a proxy for variation in F , so that an output-based

standard adds value by dampening variation in marginal abatement cost induced by shocks

to F . When η and F are negatively correlated, positive shocks to η are associated with

low fuel prices and therefore high marginal abatement costs. Expected welfare is therefore

increased by allowing agents to emit more pollution when there is high demand for output,

so that the optimal standard is heavily output-based. The reverse intuition holds when η and

F are positively correlated. These results are related to the fact that, in general, indexing

the emissions standard to any variable that is correlated with F (or to F itself, as discussed

in Kellogg (2018)) will improve expected welfare.
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Table 1: Interpretation of key variables in each application of the model

Application Q E η F

Footprint-based fuel Vehicle Gallons Marginal value of Gasoline
economy standards footprint (ft2) per 100 miles footprint ($/ft2) price ($/gal)

Fuel economy standard Lifetime 1000s of Lifetime gallons Marginal value of Gasoline
with endogenous miles traveled consumed per miles traveled price ($/gal)
miles traveled per vehicle vehicle ($/1000 miles)

Output-based CO2 Electricity CO2 emissions Marginal value of Negative of
regulation of generation (Mmtons/yr) electricity natural gas
electricity generation (TWh/yr) ($/TWh/yr) price ($/mmBtu)

Units: ft2 = square feet; gal = gallons; TWh/yr = Terawatt hours per year; Mmtons/yr = millions

of metric tons per year; mmBtu = millions of British Thermal Units.

4 Output and attribute-based standards in three set-

tings

Section 3 presented a model showing that output or attribute-based emissions standards

can increase expected welfare, relative to a flat standard, in the presence of uncertainty

about agents’ future marginal valuation of output (or attributes). This section evaluates the

quantitative importance of this result by calibrating the model to reflect three U.S. policy

settings: (1) an attribute-based fuel economy standard (holding vehicle miles traveled fixed);

(2) a fuel economy standard in the presence of endogenously-chosen miles traveled (holding

vehicle attributes fixed); and (3) an output-based CO2 standard for electric generation. Table

1 summarizes the interpretation of the variables Q, E, η, and F in each application. In each

case, I use the model to evaluate the expected welfare obtained from both a flat standard and

an intensity standard, and I then compute the welfare-maximizing output or attribute-based

standard.

In all three settings, I apply the modeling framework from sections 2 and 3 directly,

abstracting away from heterogeneity or other institutional features, and maintaining the

second-order Taylor approximation for B(Q,E, η, F ). Consequently, the quantitative exer-

cises below should not be viewed as providing definitive answers but rather as providing
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diagnostics for when heavily output or attribute-based standards might improve expected

welfare. These results can therefore guide future research that would more precisely model

the relevant agents and institutions in specific settings. In addition, the fidelity of these

exercises to the model helps to tightly link the results to the core intuition underlying the

model and to the comparative statics discussed at the end of section 3.2.

In each setting, I allow for uncertainty in both η (the marginal value of output) and F

(fuel prices), even though volatility in F cannot on its own motivate output or attribute-

based standards. Incorporating uncertainty in F does, however, highlight the substantial

difference between the first-best outcome and outcomes under emissions standards (output-

based or not) when fuel price uncertainty is large, as it is in all three applications.16 My

baseline simulations assume that the correlation between η and F is zero, so that the welfare

effects of output-basing are driven solely by the intuition presented in section 3.2 rather

than by the possibility that shocks to output act as a proxy for shocks to fuel prices, as

discussed in section 3.3.17 In practice, I am not aware of any emissions standard that is

indexed directly to fuel prices; thus, it seems appropriate to eliminate this motivation for

output-based standards here. Nonetheless, to shed light on the effects of correlation between

η and F , I include a sensitivity analysis in the electricity sector application in section 4.3.

In each of the three applications, quantifying welfare effects requires estimates of the

parameters governing B(Q,E, η, F ), the externality φ, and the uncertainty in η and F faced

by the regulator. The three subsections below—one for each application—summarize how I

calibrate these parameters using estimates from previous studies and my own estimates of the

historic volatility of attributes, output, and fuel prices. They then present simulated welfare

16When I run the models with a non-stochastic and constant fuel price, the welfare rankings of flat versus
intensity standards and the optimal output-based slopes γ are qualitatively unchanged from those presented
below. The optimal slopes are 0.003 gal/100mi/ft2, 0.68 gal/100mi, and 0.36 Mmtons CO2/TWh in the
footprint, miles traveled, and electricity applications, respectively. The expected welfare associated with
these optimal slopes is substantially larger, however, than what is presented below: $68/vehicle, $68/vehicle,
and $2.8 billion/year.

17When I estimate the correlation between η and F using the relevant data for each application, I obtain
correlation coefficients of -0.05, 0.45, and -0.06 for the footprint, miles traveled, and electricity applications,
respectively. In each case, incorporating these correlations into the simulation does not affect the rank
ordering of the flat vs. intensity standards.
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outcomes from different emissions policies. Additional detail on the parameter calibration is

presented in appendix B.

4.1 Footprint-based fuel economy standards

I first consider U.S. footprint-based fuel economy standards, holding vehicle miles traveled

fixed. As shown in table 1, this model defines Q as vehicle footprint in square feet (ft2) and

E as vehicle fuel economy in gallons per 100 miles (gal/100mi). I measure private welfare

B(Q,E, η, F ) as $ per vehicle, normalized to zero at agents’ unconstrained choices at each

possible realization of η and F .

I calibrate the model from the perspective of a regulator setting an emissions standard

in 2012 that will apply for 10 years into the future. This approach is aligned with actual

U.S. fuel economy policy, as the standards set in 2012 will apply through at least 2021 and

possibly 2025 (see Kellogg (2018) for a discussion). I summarize my calibration here and

present additional detail in appendix B.1.

Table 2 presents the calibrated parameter values for this application. My estimate of

BQQ comes from Ito and Sallee (2018), which estimates this parameter using changes in the

weight of Japanese vehicles following changes in Japan’s weight-based fuel economy subsidies

in 2009 (I am not aware of any papers that estimate this parameter in the U.S. market). I

obtain BEE from National Research Council (2015), which estimates “pathways” by which

fuel economy can be improved via sequential addition of fuel-saving technology to a baseline

vehicle. And I derive BQE from the fact that the actual slope parameter γ for U.S. fuel

economy regulations was drawn to match −BQE/BEE, the rate at which private agents

increase E with Q.18

BEF in this application represents the (negative) lifetime discounted miles traveled for

18The original footprint-based regulation (71 FR 17565) states on p.17596 that “the agency adds fuel
saving technologies to each manufacturer’s fleet until the incremental cost of improving its fuel economy
further just equals the incremental value of fuel savings and other benefits from doing so” for each vehicle
model, and then statistically fits a line to the resulting relationship between fuel use and footprint. This
slope from this line is exactly what is described by −BQE/BEE .
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Table 2: Calibrated parameters for U.S. footprint-based fuel economy standards

Parameter Value Main sources
BQQ -$197 / ft4 Ito and Sallee (2018), table 3, column (2)
BEE -$1756 / (gal/100mi)2 National Research Council (2015), tables 8.4a and 8.4b
BQE $77.9 / (gal·ft2/100mi) BEE times slope of U.S. footprint-based standard
BEF -115644 miles Discounted vehicle lifetime from Busse et al. (2013)
BQη 1 normalization
σF $0.35 / gal historic volatility of gasoline prices
ση $41.70 / ft2 historic volatility of vehicle footprints
φ $486 / (gal/100mi) Kellogg (2018) externality of $0.42/gal, converted to

vehicle lifetime using Busse et al. (2013)

new vehicles. I derive BEF using data from Busse, Knittel, and Zettelmeyer (2013) on fleet-

average scrappage probabilities and miles traveled for new vehicles, along with a discount

rate of 6.2% from Allcott and Wozny (2014).

To obtain φ, I begin with the externality of $0.42/gal used in Kellogg (2018), which

combines the social cost of carbon from Interagency Working Group (2013) with an estimate

of the foreign oil dependency externality from Parry, Wells, and Harrington (2007). I convert

this value to units of $ per (gal/100mi) by multiplying by −BEF .

I model the realized fuel price F as normally distributed, with a mean of F0 and a standard

deviation σF . I set F0 equal to the average 2012 retail gasoline price of $3.69/gallon (real

$2012).19 To calibrate σF , I estimate, over the ten-year regulatory horizon, the volatility of

the three-year moving average of historic monthly U.S. gasoline prices.20 For each month

t ∈ [1, 120], I compute the historic volatility of this moving average by taking the standard

deviation of t-month differences in the moving average. I set σF equal to the average volatility

across all horizons t ∈ [1, 120], yielding σF = $0.35/gal.21

19A no-change forecast assumption is consistent with results on the relative accuracy of no-change forecasts
of the long-run real price of oil (Alquist, Kilian, and Vigfusson 2013) and relates to evidence that consumers
hold no-change beliefs about future gasoline prices (Anderson, Kellogg, and Sallee 2013).

20I use the moving average rather than the raw monthly data because automakers can typically only adjust
their vehicles’ fuel economy during a model “refresh”, and a complete refresh cycle usually takes three or
four years. Were I to instead use the raw monthly data, I would estimate σF = $0.65/gal, in which case
even the optimally-set attribute-based standard would achieve a welfare gain of only $7 per vehicle. This
optimal standard is essentially flat, similar to the results below.

21In principle, the calculations below of the optimal standards and their welfare outcomes should integrate
over welfare effects for each month in which the standard is applied, rather than be calculated from the
average volatility over this time. As in Kellogg (2018), I use the latter approach here because it is easier to
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I normalize the expected value of η to zero and calibrate ση using the fact that under a

flat fuel economy standard, ση is equal to BQQ/BQη times the standard deviation of Q, which

I denote σQ (see equation (18) in appendix A.1). I adopt the normalization BQη = 1 and

obtain an estimate of σQ using historic data on average U.S. vehicle footprints from Leard,

Linn, and McConnell (2017). Because these data are annual and only go back to 1996, it is

not practical to estimate σQ by taking long differences, as I did for σF . Instead, I estimate

an AR1 process for Q, use the resulting estimates to project annual volatility in Q out over

a ten-year horizon, and then obtain σQ by averaging volatility over the ten years.

Given these inputs, figure 3 presents footprint, fuel economy, and welfare outcomes under

various forms of fuel economy regulation. The “x” denotes Q̄ and Ē: the baseline 2012

footprint and fuel economy (56.8 ft2 and 4.37 gal/100mi, respectively) that would have been

chosen in the absence of regulation.22 The η and F arrows in the top-left of the figure indicate

the magnitude and direction of changes in Q and E induced by a one standard deviation

increase in η and F , respectively. The representation of agents’ choices of Q and E when

unconstrained by regulation takes the form of an ellipse rather than a line (as in figures 1

and 2), owing to the presence of uncertainty in both η and F . The area encircled by the

solid black ellipse denotes agents’ unconstrained choices given realizations of η and F that

account for 95% of their joint probability mass. The lower dashed green ellipse indicates

socially optimal choices. With the expected welfare of unregulated agents normalized to

zero, the welfare gain from a Pigouvian tax on emissions is $68 per vehicle.

The flat, dotted black line (which is mostly hidden behind the solid red line) in figure 3

indicates the optimal flat emissions standard. This standard binds somewhat more than half

the time (it is located slightly below (Q̄, Ē)) and captures welfare gains of $33 per vehicle,

just 48% of the gain under the social optimum. This shortfall is a consequence of the large

uncertainty in F , which results in substantial expected variation in marginal abatement costs

when the standard binds.

implement and because it more tightly connects to the model presented in sections 2 and 3.
22Appendix B.1 discusses how I obtain values for Q̄ and Ē.
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Figure 3: Fuel economy, vehicle footprints, and welfare under footprint-based fuel
economy standards
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Note: Expected welfare is normalized to zero for agents’ unconstrained choices. The solid black

and dashed green ellipses indicate agents’ privately optimal and socially optimal (respectively)

choices of footprints and fuel economy associated with realizations of η and F that lie on the

iso-pdf of their bivariate normal distribution that encompasses 95% of the probability mass. The

η and F arrows indicate the changes in footprint and fuel economy induced by a one standard

deviation change in η and F when agents are unconstrained. The bold straight lines denote the

optimal flat standard (dotted black), optimal intensity standard (dash-dot blue), and optimal

footprint-based standard (solid red). See text for details.

The optimal amount of attribute-basing is small: the optimal value of γ is 0.003 gallons

per 100 miles per ft2, equal to only 6% of the slope of the actual U.S. regulation. This

optimal attribute-based standard is given by the solid red line in figure 3. In addition, the

optimal intensity standard—represented by the dash-dot blue line—reduces welfare relative

to the flat standard (and has a slope 65% greater than the actual U.S. regulation).
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The limited value of attribute-based standards in this application is a consequence of

the small variance in η, the marginal value of vehicle footprint, relative to the magnitude

of the externality. As can be seen in figure 3, the variance of footprint Q when agents are

unconstrained is quite small in percentage terms (the scale of the horizontal axis in figure

3 visually exaggerates this variance). Even with a near-doubling of ση to $76.83/ft2, the

optimal attribute slope γ is still only 0.008 gallons per 100 miles per ft2.23

4.2 Fuel economy standards with endogenous miles traveled

In this subsection, I fix vehicle attributes and instead let Q represent lifetime miles traveled

per vehicle. E now represents total lifetime gallons of gasoline consumed per vehicle, and

I continue to measure private welfare B(Q,E, η, F ) as $ per vehicle, normalized to zero

for agents’ unconstrained choices at each F and η.24 I summarize the calibration here and

present details in appendix B.2.

To calibrate the values of BQQ, BQE, and BEE, I first rewrite B(Q,E, η, F ) as a sum-

mation of objects that have empirical counterparts in the literature: the utility U(Q, η)

from miles traveled, fuel costs −EF , and the vehicle cost −C(E/Q). Thus, B(Q,E, η, F ) =

23ση = $76.83/ft2 is obtained by assuming footprints follow a random walk with drift, as discussed in
appendix B.1, rather than the AR1 process used in the main estimates.

24More precisely, B(Q,E, η, F ) denotes expected lifetime private welfare per vehicle at the time it is
purchased new, given a no-change forecast for future gasoline prices (Anderson, Kellogg, and Sallee 2013)
and demand for miles (η). Realized utility for each vehicle will be a function of realized shocks.
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Table 3: Calibrated parameters for U.S. fuel economy standards with endogenous vehicle
miles traveled

Parameter Value Main sources
BQQ -$14.96 / (1000mi)2 Gillingham (2020)
BEE -$0.0013 / gallon2 BEE from table 2, scaled by vehicle lifetime miles
BQE $0.016 / (gal·1000mi) BEE from table 2; Leard and McConnell (2017)
BEF -1 by construction
BQη 1 normalization
σF $0.35 / gal historic volatility of gasoline prices
ση $55.50 / 1000mi historic volatility of miles traveled
φ $0.42 / gallon Kellogg (2018)

Note: Calibration of BQQ, BQE , and BEE also uses vehicle lifetime mileage assumptions from

Busse, Knittel, and Zettelmeyer (2013) and average 2012 U.S. fuel economy from Leard, Linn,

and McConnell (2017). See text for details.

U(Q, η)− EF − C(E/Q).25 Taking derivatives then yields:26

BQQ = UQQ − C ′′E2Q−4 − 2C ′EQ−3 (6)

BQE = C ′′EQ−3 + C ′Q−2 (7)

BEE = −C ′′Q−2 (8)

UQQ relates directly to the elasticity of miles traveled with respect to the price of gasoline

F , holding fuel economy constant, since in that case dQ/dF = E/(QUQQ). I use an elasticity

of -0.081 from Gillingham’s (2020) recent survey of the literature on the rebound effect.27

C ′′ is the same object as BEE from the footprint application in table 2. I calculate C ′

25This formulation for B(Q,E, η, F ) assumes that vehicle depreciation is entirely a function of time rather
than mileage. To the extent that depreciation is a function of miles driven (and consumers account for
depreciation when making driving choices), then a fuel economy policy behaves more like an emissions cap,
and in fact becomes equivalent to an emissions cap in the limit in which depreciation is solely a function of
mileage. I thank Mark Jacobsen for alerting me to this insight.

26I assume that B(Q,E, η, F ) is a second-order Taylor approximation local to the actual values of Q0 and
E0 for new U.S. vehicles in 2012. I use Q0 = 115644 miles, consistent with the value of −BEF from the
footprint-based regulation application in section 4.1. I calculate E0 as the product of Q0 with the 2012 U.S.
average fuel economy of 4.01 gallons per 100 miles from Leard, Linn, and McConnell (2017).

27Of the papers on the rebound effect that Gillingham (2020) surveys, -0.081 is the average elasticity
among papers that use odometer readings as the primary data source. The average elasticity across all
papers that Gillingham (2020) surveys is -0.141. Using this elasticity rather than the baseline elasticity of
-0.081 only modestly changes the results: the optimal regulation slope γ is 0.73 gallons per 100 miles rather
than 0.74 gallons per 100 miles.
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using the equilibrium relationship that −C ′ is equal to expected lifetime discounted fuel

costs plus the shadow value of the fuel economy standard. I obtain the 2012 shadow value

from Leard and McConnell (2017), and I calculate expected fuel costs as the product of Q

with the 2012 average retail gasoline price of F0 = $3.69/gallon. Together, the estimates of

UQQ, C ′, and C ′′ yield the values of BQQ, BQE, and BEE shown in table 3. I follow Kellogg

(2018) in adopting the externality φ = $0.42/gallon.

The calibration of σF is the same as in the footprint-based standard application in section

4.1. To calibrate ση, I use the fact that ση is given by the volatility in miles traveled, σQ,

divided by dQ/dη.28 To compute σQ, I obtain historical data on average U.S. vehicle miles

traveled from the Federal Reserve Bank of St. Louis. I adjust the miles traveled time series

by subtracting off the effects of shocks to fuel prices F , in order to isolate volatility induced

by η. I then compute σQ by extrapolating annual volatility in adjusted miles traveled over

a ten-year horizon, under an assumption that miles traveled evolves as a random walk with

drift.

I use the calibrated parameters in table 3 to generate the results in figure 4, which

illustrates miles traveled, fuel economy, and welfare outcomes using the same scheme as

figure 3. Relative to the footprint-based standards application, volatility in Q is somewhat

larger, so that the optimal standard is noticeably output-based. However, the optimal slope

γ of 0.74 gallons per 100 miles is considerably less than the slope of 4.06 gallons per 100

miles associated with the optimal intensity standard. Consequently, the optimal output-

based standard achieves modestly greater expected welfare than a flat standard ($32.3 versus

$32.0 per vehicle), while the welfare associated with the intensity standard is substantially

less ($25.1 per vehicle). The relatively poor performance of the intensity standard is driven

by: (1) the incentive it generates to increase miles traveled, even with this calibration’s fairly

small driving elasticity of -0.081; and (2) the fact that fuel consumption increases less than

one-for-one with miles traveled in response to η shocks, since consumers choose more efficient

28dQ/dη for constrained agents is given in appendix A.1, equation (18), where γ0 denotes the 2012 average
fleet-wide fuel economy of 4.01 gallons per 100 miles.
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Figure 4: Gasoline consumption, miles traveled, and welfare under fuel economy
standards with endogenous miles traveled
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F arrows indicate the changes in miles traveled and fuel use induced by a one standard deviation

change in η and F when agents are unconstrained. The bold straight lines denote the optimal flat

standard (dotted black), optimal intensity standard (dash-dot blue), and optimal output-based

standard (solid red). See text for details.

vehicles when they plan to drive more.

Finally, as was the case in the footprint-based results in figure 3, even the optimal output-

based standard obtains less than half the expected welfare than the Pigouvian tax. This

result is again a consequence of the large uncertainty in gasoline prices F .
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4.3 Electricity sector emissions standards

Finally, I apply the model to the U.S. electricity sector. In this model, Q represents electricity

generation and consumption (in TWh per year), and E represents CO2 emissions (in Mmtons

per year), as shown in table 1. The sources of uncertainty are η, representing the marginal

value of electric power, and F = −Pg, representing the negative price of natural gas. I use

the natural gas price to capture F both because it is volatile and because this price is an

important driver of switches between coal and natural-gas fired generation, where natural gas

involves substantially less CO2 per TWh generated than coal (Cullen and Mansur 2017).29

B(Q,E, η, F ) here denotes total annual private welfare from the U.S. electric sector. I use

2015, the year the Clean Power Plan was finalized in the Federal Register, as the base year

for the calibration.30

η and F experience both high and low frequency variation. Power demand, for instance,

fluctuates considerably within each day but also varies across years, following economic

cycles. I follow Borenstein et al. (2019) by focusing on this lower-frequency variation when

I calibrate the model, since electric sector carbon regulation typically involves long time

horizons and annual (rather than daily) compliance periods.

The calibrated parameters I use are presented in table 4, and I discuss my calibration

procedure in greater detail in appendix B.3. To calibrate BQQ, I use the estimated demand

elasticity of -0.09 from Ito (2014), which uses residential billing data from California and

incorporates responses to price lags of up to four months.31 As a sensitivity analysis, I also

examine results that use a long-run demand elasticity of -0.27 from Deryugina, MacKay, and

Reif (2020).32

29I set F equal to negative Pg because low natural gas prices cause substitution from coal to gas, which
reduces (rather than increases) CO2 emissions holding Q fixed.

30See Federal Register (23 Oct., 2015), Vol. 80, No. 205, pp. 64661–65120.
31By focusing on the demand side only when calibrating BQQ, I am implicitly assuming that electricity

supply is constant returns to scale. For year-to-year variation in load, marginal generation costs may also
increase with load, in which case I would underestimate the total magnitude of BQQ.

32Deryugina, MacKay, and Reif’s (2020) elasticity of -0.27 is a two-year elasticity. That paper’s six-month
elasticity matches the estimate of -0.09 from Ito (2014).
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Table 4: Calibrated parameters for U.S. electricity sector emissions

Parameter Value Main sources
BQQ -$344702 / TWh2 Ito (2014), table 3
BEE -$274745 / Mmton2 Cullen and Mansur (2017), table 2
BQE $136877 / (TWh·Mmton) constant returns to scale assumption
BEF -11.3 million mmBtu per Mmton Cullen and Mansur (2017) and EIA
BQη 1 normalization
σF $2.59 / mmBtu historic volatility of natural gas prices
ση $55.4 million / TWh historic volatility of electricity consumption
φ $38 million / Mmton Interagency Working Group (2013)

To calibrate BEE, I use Cullen and Mansur’s (2017) estimate that a $40 per ton tax on

CO2 will reduce emissions by 7.9%, holding electricity output fixed. To obtain BQE, I use

the relationship dE/dQ = −BQE/BEE, and I obtain dE/dQ by leveraging the assumption

that the electric sector is constant returns to scale, so that dE/dQ = Ē/Q̄ = 0.50 Mmton

CO2 per TWh.33 Finally, I estimate BEF using logic from Cullen and Mansur (2017) that

the effects of changes in the price of natural gas, Pg, can be mapped to the effects of carbon

pricing, given the difference in CO2 emissions between coal and natural gas.

To calculate σF , I use monthly data on the front-month futures price for natural gas

delivery to Henry Hub, Louisiana, which are available from the EIA back to January, 1994.

I calculate σF from these data using the same long-difference procedure discussed in section

4.1 to calculate σF for gasoline prices, except that here I: (1) use the raw monthly data

rather than a moving average; and (2) use a 15-year regulatory horizon that corresponds to

the Clean Power Plan’s target year of 2030.34 I estimate σF = $2.59/mmBtu.

I estimate ση using annual data on net electricity generation from the electric power

industry, dating back to 1990, available from the EIA. The procedure I use is similar to

that from the miles traveled application in section 4.2. First, I adjust the generation time

series for changes induced by fluctuations in the price of natural gas. I then compute σQ

33In comparison, Graff Zivin et al. (2014) estimates, on average across the U.S., that dE/dQ = 0.55
Mmton CO2 per TWh for hourly changes in Q.

34I use the raw annual natural gas price data rather than a moving average because a substantial mechanism
for emissions reductions from the power sector is change in utilization of coal versus gas-fired generators from
the existing fleet, rather than new investment.
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by extrapolating annual volatility in adjusted generation over a 15-year horizon, under an

assumption that generation evolves as a random walk with drift. I convert σQ to ση using

the fact that the volatility of Q equals dQ/dη times ση.
35

The model’s output is presented in figure 5. For the U.S. electricity market, I find that

an optimally-set intensity standard modestly outperforms an optimal flat standard, yielding

expected welfare gains of $1.42 rather than $1.24 billion/year (relative to no regulation). The

optimal output-based regulation has a slope parameter γ = 0.32 Mmtons CO2 per TWh,

equal to 69% of the slope of the intensity standard.

This substantial difference in results, relative to the passenger vehicle applications in

sections 4.1 and 4.2, stems primarily from the fact that the variance in η (the marginal value

of electricity) is relatively large in this application. The variation in electricity use Q induced

by ση is such that the standard deviation of Q, absent regulation, is 4.9% of its expected

value.36

Together, the uncertainty in η and F is sufficiently large relative to the externality φ

that the optimal flat, intensity, and output-based standards all would bind only slightly

more than 50% of the time. These results are related to those presented in Borenstein et

al. (2019), which studies California’s cap-and-trade program and finds that uncertainty

about future emissions paths is sufficiently large that the market is exceedingly likely to

have an equilibrium price that lies at the administrative price floor or ceiling. In addition,

the substantial volatility of both η and F causes even the optimal output-based standard to

realize substantially less expected welfare than a Pigouvian tax on emissions, which would

achieve a welfare improvement of $3.28 billion/year.

35dQ/dη is given by −BEEBQη/(BQQBEE −B2
QE), as derived for unconstrained agents in appendix A.1,

equation (12).
36Relative to Borenstein et al’s (2019) study of the California electricity market, this uncertainty is small.

Borenstein et al. (2019) forecasts non-hydro electricity generation for 2020, starting from a base year of 2012,
and finds that the standard deviation of the forecast is 17% of its expected value (see column (1) of table 2
in that paper). Since shocks to generation are not perfectly correlated across states, it is not surprising that
forecast uncertainty for a single state is appreciably larger than uncertainty over the entire United States.
Borenstein et al’s (2019) estimate also incorporates parameter uncertainty, whereas the estimate I compute
assumes that generation evolves as a random walk.

31



Figure 5: CO2 emissions, electricity consumption, and welfare under output-based
electricity emission standards
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The welfare ranking of the flat versus intensity standard is sensitive to parameter inputs.

In particular, changes to demand uncertainty ση, the electricity demand elasticity, or the

correlation ρ between demand shocks η and fuel price shocks F can change the policy welfare

ordering:

• Demand uncertainty ση. If I halve ση and re-simulate the model, the optimal slope

32



γ falls by roughly half, to 0.15 Mmtons CO2 per TWh, and a flat standard outperforms

the intensity standard. Conversely, if I double ση the optimal gamma increases to 0.44

Mmtons CO2 per TWh, and the flat standard achieves less than half the expected

welfare gain captured by the intensity standard.37

• Demand elasticity. If I use the long-run elasticity from Deryugina, MacKay, and

Reif (2020) of -0.27 rather than the elasticity of -0.09 from Ito (2014), the flat standard

achieves an expected welfare gain of $1.94 billion per year, relative to $1.61 billion per

year under the intensity standard.38 Still, even in this case I find that the welfare-

maximizing standard is substantially output-based, with a slope of 0.26 Mmtons CO2

per TWh.

• Correlation between η and F . The baseline simulation assumes that the η and

F shocks are uncorrelated. If I instead impose a modest correlation of 0.25, that

is sufficient to reverse the welfare ordering: the expected welfare outcomes from the

optimal flat and intensity standards are $1.54 and $1.44 billion/year, respectively.

These sensitivities highlight the potential value of future work that could more faithfully

estimate a model of the U.S. electricity sector and then simulate the impacts of flat or output-

based standards. For instance, the VAR-based forecasting strategy used in Borenstein et al.

(2019), if applied to the entire United States, could provide better estimates of both future

demand uncertainty and its correlation with fuel price uncertainty (for potentially multiple

fuels, not just natural gas). A model of dynamic demand adjustment could bridge the short

and long-run demand elasticities, rather than just use one or the other as I do here. Finally,

using detailed data on individual generators’ fuel use and marginal costs could improve the

37When ση is halved relative to the value in table 4, the expected welfare from the flat, intensity, and
optimal output-based standards are $1.58, $1.42, and $1.62 billion/year, respectively. Conversely, when ση
is doubled, the welfare from the flat, intensity, and optimal output-based standards are $0.52, $1.41, and
$1.42 billion/year, respectively.

38With a higher demand elasticity, all welfare outcomes increase. The Pigouvian tax achieves a gain of
$6.46 billion per year.
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fidelity of the supply side of the model and avoid the need to assume constant values for

BQE, BEE, and BEF .

5 Conclusions

The consensus in the economics literature on pollution control is that, in the absence of clear

pre-existing market distortions such as taxes, market power, or “leakage” to other sectors,

CO2 emissions standards that are output or attribute-based reduce welfare relative to simple,

“flat” emissions limits. This paper demonstrates that this prevailing welfare result holds only

when the policy-maker is certain of the demand and supply for the good(s) on which the

policy is being applied. I show that in the presence of uncertainty in the marginal value of a

good’s output or attribute, expected welfare can always be increased by transforming a flat

emissions standard into one that is output or attribute-based.

The degree to which the welfare-maximizing emissions standard depends on output or

attributes depends on the underlying economic environment and especially on the uncer-

tainty of future demand. For U.S. attribute-based fuel economy standards, I find that the

welfare-maximizing amount of attribute-basing is negligible, owing primarily to the limited

uncertainty regarding the demand for vehicle size. For U.S. electricity generation, however,

uncertainty about the demand for power is sufficiently large that the welfare-maximizing

emissions standard is substantially output-based. Furthermore, an intensity standard may

lead to greater expected welfare than a flat CO2 emissions limit. This result is suggestive,

as it is sensitive to a range of plausible parameter inputs and is derived from a highly aggre-

gated model that omits important features of the electric sector. It therefore calls for future

work that could more precisely model sector-specific details such as generation unit-specific

dispatch, short vs. long-run demand elasticities, and future uncertainty in the demand for

power. Future research could also extend this paper’s findings to other output or attribute-

based policies such as renewable portfolio standards or appliance energy efficiency standards,
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evaluating in each case the relevant uncertainties and other key parameters.

Notwithstanding the above results, it is important to not lose sight of the fact that

even optimally-set output or attribute-based CO2 standards fail to achieve the first-best

welfare outcome in uncertain economic environments. A Pigouvian tax yields strictly greater

expected welfare than any of the policies considered in this paper, as would an emissions

cap that is indexed to exogenous sources of uncertainty (such as fuel prices or GDP) rather

than to endogenously-determined objects such as goods’ output or attributes.

A natural path for future work would then be to link the normative results in this paper

to the positive literature in political economy on why particular environmental policies are

or are not adopted. Recent reviews of this literature by Keohane, Revesz, and Stavins

(1998), Oates and Portney (2003), and Schmalensee and Stavins (2019) emphasize how cap-

and-trade schemes that grandfather permits are more likely to build durable pro-regulation

constituencies than are emissions taxes, despite the efficiency benefits of the latter. Rabe

(2018) additionally points out that cap-and-trade may be politically advantaged because

its costs are hidden relative to the explicit prices imposed via a tax. This literature has

had less to say, however, on the prevalence of intensity, output-based, and attribute-based

regulations, especially relative to cap-and-trade programs with targeted grandfathering or

rebates. The present paper speaks to possible efficiency justifications for such policies in the

presence of uncertainty. Another potentially fruitful line of research would be to analyze the

distributional politics of output-based standards, perhaps linking to the broader political

economy literature on distortionary distribution mechanisms (Grossman and Helpman 1994,

Coate and Morris 1995, Acemoglu and Robinson 2001, Glaeser and Ponzetto 2014).
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Online appendix

A Theoretical model

A.1 Comparative statics of the model

This appendix derives the comparative statics for dQ/dη, dQ/dF , dE/dη, and dE/dF , both
when agents choices’ are unconstrained and when they are constrained by output-based
emissions regulation.

When choices are unconstrained, agents solve the problem:

max
Q,E

B(Q,E, η, F ). (9)

The FOCs for this problem are given by:

FOCQ : BQ(Q,E, η, F ) = 0 (10)

FOCE : BE(Q,E, η, F ) = 0. (11)

And the SOC is BQQBEE − B2
QE > 0. The implicit function theorem then yields the

following comparative statics when agents’ choices are unconstrained:

dQ

dη
=

−BEEBQη

BQQBEE −B2
QE

(12)

dQ

dF
=

BQEBEF

BQQBEE −B2
QE

(13)

dE

dη
=

BQEBQη

BQQBEE −B2
QE

(14)

dE

dF
=

−BQQBEF

BQQBEE −B2
QE

. (15)

When agents are constrained to the regulation E = µ0 + γQ, they instead solve:

max
Q

B(Q, µ0 + γQ, η, F ). (16)

The FOC for this problem, using the notation E(Q) = µ0 + γQ, is given by:

FOCQ : BQ(Q,E(Q), η, F ) + γBE(Q,E(Q), η, F ) = 0. (17)

And the SOC is BEEγ
2+2BQEγ+BQQ < 0. The implicit function theorem then yields the

following comparative statics when agents’ choices are constrained by output-based emissions
regulation (where the notation suppresses the dependence of BQ, BE, dQ/dη, dQ/dF , dE/dη,
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dE/dF , dQ/dµ0, dE/dµ0, dQ/dγ, and dE/dγ on µ0, γ, η, and F ):

dQ

dη
=

−BQη

BEEγ2 + 2BQEγ +BQQ

(18)

dQ

dF
=

−BEFγ

BEEγ2 + 2BQEγ +BQQ

(19)

dE

dη
=

−BQηγ

BEEγ2 + 2BQEγ +BQQ

(20)

dE

dF
=

−BEFγ
2

BEEγ2 + 2BQEγ +BQQ

(21)

dQ

dµ0

=
−(BEEγ +BQE)

BEEγ2 + 2BQEγ +BQQ

(22)

dE

dµ0

= 1 + γ
dQ

dµ0

=
BQEγ +BQQ

BEEγ2 + 2BQEγ +BQQ

(23)

dQ

dγ
=
−(BE +BEEQγ +BQEQ)

BEEγ2 + 2BQEγ +BQQ

(24)

dE

dγ
= Q+ γ

dQ

dγ
=
−BEγ +BQEQγ +BQQQ

BEEγ2 + 2BQEγ +BQQ

. (25)

A.2 Representative consumer model

Consider a unit mass of agents i, each of whom purchases a good with quantity (or attribute)
Qi and emissions Ei, yielding private benefit Bi(Qi, Ei, η, F ) that can be well-approximated
by a second-order Taylor expansion. This section, which closely follows Kellogg (2018),
proves that a sufficient statistic for the effects of emissions standards on utilitarian social
welfare is given by the private benefit function B(Q,E, η, F ) less damages φE, where Q and
E are the sum (or average) of the Qi and Ei, and the first derivatives of B equal the sum
(or average) of the Bi

Q and Bi
E, assuming: (1) all second derivatives of B are constant and

identical across agents; (2) inclusion of compliance trading in any emissions standard; and
(3) equal and constant marginal utility of income (and welfare weights) across agents.

To begin, note that with compliance trading, and given values for η and F , any emissions
standard is equivalent to a policy that taxes (or subsidizes) Q and E, since all agents must
face the same permit price in competitive equilibrium. Given a regulatory slope γ, FOCQ

in equation (17) must hold for all agents, so that Bi
Q = −γBi

E ∀i. And if the price of an
emissions permit is given by τ , we have Bi

Q = −γτ and Bi
E = τ ∀i. Thus, given values for η

and F , I can model agents’ welfare under an emissions standard by instead modeling a tax
τ on E and a tax τQ ≡ −γτ on Q.

Next, I show that imposition of a tax τ on E and a tax τQ ≡ −γτ on Q yields identical
changes in Q and E for all agents. A given agent i’s FOCs under these taxes are given by:

FOCQ : BQ(Q,E, η, F ) = τQ (26)

FOCE : BE(Q,E, η, F ) = τ. (27)

Following appendix A.1, application of the implicit function theorem yields the following
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comparative statics:

dQi

dτQ
=

BEE

BQQBEE −B2
QE

;
dQi

dτ
=

−BQE

BQQBEE −B2
QE

; (28)

dEi
dτQ

=
−BQE

BQQBEE −B2
QE

;
dEi
dτ

=
BQQ

BQQBEE −B2
QE

. (29)

If all second derivatives of B are identical for all agents, then each of the above derivatives
will also be identical for all agents. Thus, emissions standards in this setting will have
identical effects on each agent’s choices of Q and E.

Finally, I show that the aggregate social welfare function
∫
i
(Bi(Qi, Ei, η, F )−φEi)di can

be written as the sum of the representative agent’s welfare function B(Q,E, η, F ) in the text
(where Q =

∫
i
Qidi and E =

∫
i
Eidi), −φE, and terms that are policy-invariant. Let Q0

and E0 denote total quantity and emissions with no emissions policy and with η = η̄ and
F = F̄ (where η̄ and F̄ denote the expected values of η and F ). Using a second-order Taylor
approximation around Q0, E0, η̄, and F̄ , social welfare is then given by:39

∫
i

(Bi(Qi, Ei, η, F )− φEi)di =

∫
i

Bi
Q0(Qi −Q0)di+

∫
i

Bi
E0(Ei − E0)di

+
1

2
BQQ

∫
i

(Qi −Q0)
2di+

1

2
BEE

∫
i

(Ei − E0)
2di

+BQE

∫
i

(Qi −Q0)(Ei − E0)di+BQη

∫
i

(Qi −Q0)(η − η̄)di

+BEF

∫
i

(Ei − E0)(F − F̄ )di− φE, (30)

where Bi
Q0 and Bi

E0 denote the values of agents’ first derivatives of Bi at (Q0, E0, η̄, F̄ ).
Replace the (Qi − Q0) terms in equation (30) with (Qi − Q + Q − Q0) and do likewise

with the (Ei−E0) terms. Define BQ0 ≡
∫
i
Bi
Q0di and BE0 ≡

∫
i
Bi
E0di. After removing terms

39The assumption of equal and constant marginal utility of income (and welfare weights) across agents is
necessary for equation (30) to represent utilitarian social welfare, since in this case all wealth effects across
agents cancel out in aggregate.
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for which the expectation is zero, and after grouping related terms together, we obtain:∫
i

(Bi(Qi, Ei, η, F )− φEi)di = [BQ0(Q−Q0) +BE0(E − E0) +
1

2
BQQ(Q−Q0)

2

+
1

2
BEE(E − E0)

2 +BQE(Q−Q0)(E − E0)

+BQη(Q−Q0)(η − η̄) +BEF (E − E0)(F − F̄ )− φE]

+ [

∫
i

Bi
Q0(Qi −Q)di+

∫
i

Bi
E0(Ei − E)di

+
1

2
BQQ

∫
i

(Qi −Q)2di+
1

2
BEE

∫
i

(Ei − E)2di

+BQE

∫
i

(Qi −Q)(Ei − E)di] (31)

The first bracketed term in equation (31) is the second order Taylor expansion ofB(Q,E, η, F )−
φE. The second bracketed term is policy-invariant, since Qi − Q and Ei − E are constant
for each i. Thus, B(Q,E, η, F )− φE is a sufficient statistic for the social welfare impacts of
the emissions standards considered in the paper.

A.3 Welfare-maximizing standard under uncertainty in F

This appendix proves that, when there is uncertainty only in F , the optimal standard has
γ = 0, as discussed in section 3.1 in the main text. The argument closely follows appendix
B.3 in Kellogg (2018).

It will be useful to begin by developing simple expressions for BE and BQ while the agents

are constrained. Given µ0 and γ, let F̂ denote the fuel price at which the standard just binds,
and let Q̂ and Ê denote the agents’ choices of Q and E at F̂ . Because BQ(Q̂, Ê, F ) = 0 ∀F
(recall that BQF = 0), we may write the Taylor expansion for BQ as:

BQ(Q,E, F ) = BQE(E − Ê) +BQQ(Q− Q̂) (32)

On the E = µ0 + γQ standard, use equations (19) and (21) to replace E − Ê and Q− Q̂
in (32), yielding:

BQ(Q,E, F ) =
−γ(BQEγ +BQQ)

BEEγ2 + 2BQEγ +BQQ

BEF (F − F̂ ). (33)

In addition, equation (17) implies that BE = −BQ/γ, implying:

BE(Q,E, F ) =
BQEγ +BQQ

BEEγ2 + 2BQEγ +BQQ

BEF (F − F̂ ). (34)

We now turn to the regulator’s problem given by equation (2) in the main text, which

A-4



can be expanded to:

max
µ0,γ

∫ F̂ (µ0,γ)

FL

(B(Q(µ0, γ, F ), E(µ0, γ, F ), F )− φE(µ0, γ, F ))w(F )dF

+

∫ FH

F̂ (µ0,γ)

(B(Q(F ), E(F ), F )− φE(F ))w(F )dF. (35)

The FOCs for this problem are given by (36) and (37) below, where the notation sup-
presses the dependence of BQ, BE, dQ/dµ0, dQ/dγ, dE/dµ0, and dE/dγ on µ0, γ, and
F :

FOCµ0 :

∫ F̂ (µ0,γ)

FL

(
BQ

dQ

dµ0

+BE
dE

dµ0

− φ dE
dµ0

)
w(F )dF = 0; (36)

FOCγ :

∫ F̂ (µ0,γ)

FL

(
BQ

dQ

dγ
+BE

dE

dγ
− φdE

dγ

)
w(F )dF = 0. (37)

We can simplify FOCµ0 using equations (17), (22), (23), and (34). Streamlining notation
by defining S ≡ BEEγ

2 + 2BQEγ +BQQ, we have:

FOCµ0 :

∫ F̂

FL

(
BE(

dE

dµ0

− γ dQ
dµ0

)− φ dE
dµ0

)
w(F )dF = 0 (38)

⇔ 1

S

∫ F̂

FL

(
(BQEγ +BQQ)BEF (F − F̂ )S

S
− φ(BQEγ +BQQ)

)
w(F )dF = 0 (39)

⇔ −(BQEγ +BQQ)

BEEγ2 + 2BQEγ +BQQ

∫ F̂

FL

(
φ+BEF (F̂ − F )

)
w(F )dF = 0. (40)

Equation (40) implies that µ0 should be set so that the fuel price F̂ at which the standard
binds is invariant to γ. To see this result, observe that the integral in equation (40) will only
equal zero at one unique value of F̂ , regardless of the value of γ.40 The invariance of F̂ to γ
then implies that as the regulator changes γ, the optimal “pivot point” in Q,E space about
which the standard rotates is the point (Q∗, µ∗) depicted in figure 1, panels (c) and (d).

Now work with the FOC for γ, given by equation (37). Applying equations (17), (24),

40Proof: for F̂ close to FL, the integral is positive and increasing in F̂ . As F̂ gets larger, the BEF (F̂ −F )
term dominates the φ term, and the integral then decreases in F̂ , eventually crossing zero at a unique value
of F̂ .
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(25), and (34), we obtain:

FOCγ :

∫ F̂

FL

(
BE(

dE

dγ
− γ dQ

dγ
)− φdE

dγ

)
w(F )dF = 0 (41)

⇔ 1

S

∫ F̂

FL

(
(BQEγ +BQQ)BEF (F − F̂ )SQ

S
− φ(−BEγ +BQEQγ +BQQQ)

)
w(F )dF = 0

⇔ BQEγ +BQQ

S2

∫ F̂

FL

(
(BEF (F − F̂ )Q− φQ)S + φBEF (F − F̂ )γ

)
w(F )dF = 0. (42)

Now use FOCµ0 (equation (40)) to simplify further. In particular, use the fact that

Q̂
∫ F̂
FL

(
φ+BEF (F̂ − F )

)
w(F )dF = 0 to transform equation (42) to:

⇔ BQEγ +BQQ

S2

∫ F̂

FL

(
(Q− Q̂)(BEF (F − F̂ )− φ)S + φ2γ

)
w(F )dF = 0. (43)

Then apply the derivative dQ/dF (equation (19)) to eliminate the Q− Q̂ term:

⇔ BQEγ +BQQ

S2

∫ F̂

FL

(
−BEFγ(F − F̂ )(BEF (F − F̂ )− φ) + φ2γ

)
w(F )dF = 0. (44)

Applying FOCµ0 (equation (40)) again yields:

⇔ γ(BQEγ +BQQ)

S2

∫ F̂

FL

(
−B2

EF (F − F̂ )2 + 2φ2
)
w(F )dF = 0. (45)

Define Ḟ ≡ 1

W (F̂ )

∫ F̂
FL
Fw(F )dF (i.e., Ḟ is the expected value of F conditional on the stan-

dard binding). We can then simplify the −B2
EF (F − F̂ )2 term inside the integral in equation

(45) as follows, defining σ2
Fc is the variance of F conditional on the standard binding:41

B2
eF

∫ F̂

FL

(F − F̂ )2w(F )dF = B2
eF

∫ F̂

FL

(F − Ḟ + Ḟ − F̂ )2w(F )dF

= W (F̂ )B2
eF (σ2

Fc + (Ḟ − F̂ )2)

= W (F̂ )(B2
eFσ

2
Fc + φ2), (46)

where the last line makes use of equation (40) and the definition of Ḟ .
Finally, substitute equation (46) into equation (45) to obtain:

FOCγ :
γW (F̂ )(BQEγ +BQQ)

(BEEγ2 + 2BQEγ +BQQ)2
(φ2 −B2

EFσ
2
Fc) = 0. (47)

41That is, σ2
Fc ≡ Var(F |F ≤ F̂ (µ∗)).
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Equation (47) is solved by setting γ = 0 so that the optimal standard, when there is only
uncertainty in F , is flat rather than output-based.42 The intuition for this result flows from
the fact that output-based regulation’s welfare effects stemming from both the distortion to
Q and the flexibility in E are second-order in γ.

A.4 Welfare-maximizing standard under uncertainty in η

This appendix proves that, when there is uncertainty only in η, the optimal standard has
γ > 0, as discussed in section 3.2 in the main text. It also derives the comparative statics
discussed at the end of that section.

It is useful to begin by developing simple expressions for BE and BQ while agents are
constrained. Given µ0 and γ, let η̂ denote the value of η (the shock to the marginal value of
Q) at which the standard just binds, and let Q̂ and Ê denote the agents’ choices of Q and E
at η̂. Because BE(Q̂, Ê, η) = 0 ∀η (recall that BEη = 0), we may write the Taylor expansion
for BE as:

BE(Q,E, η) = BQE(Q− Q̂) +BEE(E − Ê) (48)

On the E = µ0 + γQ standard, use equations (18) and (20) to replace Q− Q̂ and E − Ê
in (48), yielding:

BE(Q,E, η) =
−(BQE +BEEγ)

BEEγ2 + 2BQEγ +BQQ

BQη(η − η̂). (49)

We now turn to the regulator’s problem given by equation (4) in the main text, which
can be expanded to:

max
µ0,γ

∫ η̂(µ0,γ)

ηL

(B(Q(η), E(η), η)− φE(η)) v(η)dη

+

∫ ηH

η̂(µ0,γ)

(B(Q(µ0, γ, η), E(µ0, γ, η), η)− φE(µ0, γ, η)) v(η)dη. (50)

The regulator’s FOCs for µ0 and γ are given by equations (51) and (52) (suppressing the
dependence of BQ, BE, dQ/dµ0, dQ/dγ, dE/dµ0, and dE/dγ on µ0, γ, and η):

FOCµ0 :

∫ ηH

η̂(µ0,γ)

(
BQ

dQ

dµ0

+BE
dE

dµ0

− φ dE
dµ0

)
v(η)dη = 0; (51)

FOCγ :

∫ ηH

η̂(µ0,γ)

(
BQ

dQ

dγ
+BE

dE

dγ
− φdE

dγ

)
v(η)dη = 0. (52)

We can simplify FOCµ0 using equations (17), (22), (23), and (49). Streamlining notation

42γ = −BQQ/BQE is also a solution to FOCγ . Kellogg (2018) shows, however, that only the γ = 0 solution
satisfies the SOC, so long as µ0 is chosen optimally (guaranteeing that φ2 > B2

EFσ
2
Fc).
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by defining S ≡ BEEγ
2 + 2BQEγ +BQQ, we have:

FOCµ0 :

∫ ηH

η̂

(
BE(

dE

dµ0

− γ dQ
dµ0

)− φ dE
dµ0

)
v(η)dη = 0 (53)

⇔ 1

S

∫ ηH

η̂

(
−(BQE +BEEγ)BQη(η − η̂)S

S
− φ(BQEγ +BQQ)

)
v(η)dη = 0 (54)

⇔ −1

S

∫ ηH

η̂

((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ)) v(η)dη = 0 (55)

⇔ −(BQEγ +BQQ)

BEEγ2 + 2BQEγ +BQQ

∫ ηH

η̂

(
BQE +BEEγ

BQEγ +BQQ

BQη(η − η̂) + φ

)
v(η)dη = 0.

(56)

Note that, because γ appears inside the integral in equation (56), the value of η̂ at which
the optimal standard binds will be a function of γ.

Now work with the FOC for γ, given by equation (52). Applying equations (17), (24),
(25), and (49), we obtain:

FOCγ :

∫ ηH

η̂

(
BE(

dE

dγ
− γ dQ

dγ
)− φdE

dγ

)
v(η)dη = 0 (57)

⇔ 1

S

∫ ηH

η̂

(
−(BQE +BEEγ)BQη(η − η̂)SQ

S
− φ(−BEγ +BQEQγ +BQQQ)

)
v(η)dη = 0

⇔ −1

S2

∫ ηH

η̂

(((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ))QS

+ φγ(BQE +BEEγ)BQη(η − η̂))v(η)dη = 0 (58)

Now use FOCµ0 (equation (55)) to simplify further. In particular, use the fact that

Q̂
∫ ηH
η̂

((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ)) v(η)dη = 0 to transform equation (58)
to:

⇔ −1

S2

∫ ηH

η̂

(((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ))(Q− Q̂)S

− φ2γ(BQEγ +BQQ))v(η)dη = 0 (59)

Then apply the derivative dQ/dη (equation (18)) to eliminate the Q− Q̂ term:

⇔ 1

S2

∫ ηH

η̂

(((BQE +BEEγ)BQη(η − η̂) + φ(BQEγ +BQQ))BQη(η − η̂)

+ φ2γ(BQEγ +BQQ))v(η)dη = 0 (60)
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Applying FOCµ0 (equation (55)) again yields:

⇔ 1

S2

∫ ηH

η̂

((BQE +BEEγ)B2
Qη(η − η̂)2 − φ2(BQEγ +BQQ)2

BQE +BEEγ

+ φ2γ(BQEγ +BQQ))v(η)dη = 0 (61)

Define η̇ ≡ 1
(1−V (η̂))

∫ ηH
η̂

ηv(η)dη (i.e., η̇ is the expected value of η conditional on the

standard binding). We can then simplify the B2
Qη(η− η̂)2 term inside the integral in equation

(61) as follows:

B2
Qη

∫ ηH

η̂

(η − η̂)2v(η)dη = B2
Qη

∫ ηH

η̂

(η − η̇ + η̇ − η̂)2v(η)dη

= (1− V (η̂))B2
Qη(σ

2
ηc + (η̇ − η̂)2)

= (1− V (η̂))

(
B2
Qησ

2
ηc + φ2 (BQEγ +BQQ)2

(BQE +BEEγ)2

)
(62)

where the last line makes use of equation (55) and the definition of η̇, and σ2
ηc denotes

the variance of η conditional on the standard binding.
Finally, substitute equation (62) into equation (61) and combine terms to obtain:

FOCγ :
1− V (η̂)

S2
[(BQE +BEEγ)

(
B2
Qησ

2
ηc + φ2 (BQEγ +BQQ)2

(BQE +BEEγ)2

)
− φ2(BQEγ +BQQ)2

BQE +BEEγ

+ φ2γ(BQEγ +BQQ)] = 0 (63)

⇔ 1− V (η̂)

S2
[(BQE +BEEγ)B2

Qησ
2
ηc + φ2γ(BQEγ +BQQ)] = 0 (64)

⇔ (1− V (η̂))(BQEγ +BQQ)φ2

(BEEγ2 + 2BQEγ +BQQ)2

[
BQE +BEEγ

BQEγ +BQQ

·
B2
Qησ

2
ηc

φ2
+ γ

]
= 0. (65)

The solution to equation (65) requires a unique γ ∈ (0,−BQE/BEE).43 The optimal
standard is therefore output-based, though the optimal slope γ∗ is always strictly less than
the slope of the line denoting agents’ unconstrained choices in Q,E space. The intuition that
the flexibility benefits of output-based regulation are now first-order is expressed formally
by the term that is not proportional to γ inside the brackets in equation (65).

Equation (65) also produces the three comparative static results listed at the end of
section 3.2. First, increasing the ratio σ2

ηc/φ
2 increases the magnitude of the left-hand (and

negative) term in brackets, requiring a larger value of γ to set equation (65) equal to zero.
Second, increasing the ratio −BQE/BEE increases the numerator relative to the magnitude
of the denominator of the left-hand term in brackets, again requiring a larger value of γ

43For γ ∈ [0,−BQE/BEE ], the term in FOC (65) to the left of the brackets is strictly negative due to
the BQEγ + BQQ term and to agents’ private SOC, BQQBEE − B2

QE > 0. Inside the brackets, (BQE +
BEEγ)/(BQEγ + BQQ) is strictly negative on [0,−BQE/BEE) and approaches zero as γ → −BQE/BEE .
Thus, the left hand side of FOCγ is strictly positive at γ = 0 and strictly negative at γ = −BQE/BEE ,
implying an interior optimum. Furthermore, the optimal γ is unique, since the derivative of the term in
brackets with respect to γ is strictly positive for γ ∈ (0,−BQE/BEE).
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to set equation (65) equal to zero. Finally, to see the third comparative static regarding
the inelasticity of demand for Q, note that the variance of output Q under the standard
is equal to B2

Qησ
2
ηc/(BEEγ

2 + 2BQEγ + BQQ)2, using equation (18). The magnitude of the
response of Q to shocks to the cost of (or net demand for) Q decreases with the magnitude
of BEEγ

2 + 2BQEγ + BQQ. Multiply and divide the left term in brackets in equation (65)
by (BEEγ

2 + 2BQEγ + BQQ)2 to see that, holding the variance of output fixed, the welfare-
maximizing γ increases with the magnitude of BEEγ

2 + 2BQEγ +BQQ.

A.5 Welfare-maximizing standard under uncertainty in η and F

Under uncertainty in both η and F , we can write the regulator’s FOCs for µ0 and γ as:

FOCµ0 :

∫ ηH

ηL

∫ F̂

FL

(
BQ

dQ

dµ0

+BE
dE

dµ0

− φ dE
dµ0

)
w(F |η)v(η)dFdη = 0 (66)

FOCγ :

∫ ηH

ηL

∫ F̂

FL

(
BQ

dQ

dγ
+BE

dE

dγ
− φdE

dγ

)
w(F |η)v(η)dFdη = 0, (67)

where F̂ is shorthand for F̂ (µ0, γ, η), the fuel price F at which the standard just binds,
given a regulation (µ0, γ) and a demand shock η.

Because deriving an analytic expression for γ∗ is algebraically intractable, I instead eval-
uate the FOCs (66) and (67) at γ = 0, where the sign of FOCγ informs the sign of γ∗ (and
is equivalent to the sign of γ∗ assuming that the uniqueness property discussed in footnote
43 holds when F is stochastic).

Using expressions (22), (23), (24), and (25), FOCs (66) and (67) reduce to the following
at γ = 0:

FOCµ0|γ=0 :

∫ ηH

ηL

∫ F̂

FL

(BE − φ)w(F |η)v(η)dFdη = 0 (68)

FOCγ|γ=0 :

∫ ηH

ηL

∫ F̂

FL

(BEQ− φQ)w(F |η)v(η)dFdη = 0. (69)

Let η̄ ≡ Ec[η], and let (Q̄, Ē) denote agents’ choices given realizations η̄ and F̂ (µ0, γ, η̄).

Use the fact from equation (68) that
∫ ηH
ηL

∫ F̂
FL

(BE − φ)Q̄w(F |η)v(η)dFdη = 0 to rewrite

equation (69) as:

FOCγ|γ=0 :

∫ ηH

ηL

∫ F̂

FL

(BE − φ)(Q− Q̄)w(F |η)v(η)dFdη = 0. (70)

Because: (1) E − Ē = 0 for γ = 0 (since emissions are fixed at Ē when the regulation
binds); (2) BEη = 0; and (3) Q− Q̄ = −BQη(η − η̄)/BQQ when γ = 0, we have:

BE(Q,E, η, F ) =
−BQEBQη(η − η̄)

BQQ

+BEF (F − F̂ ). (71)
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Substituting into equation (70) yields:

FOCγ|γ=0 :

∫ ηH

ηL

∫ F̂

FL

(
−BQEBQη(η − η̄)

BQQ

+BEF (F − F̂ )− φ
)(
−BQη

BQQ

(η − η̄)

)
w(F |η)v(η)dFdη = 0.

(72)
The term involving φ is zero because Ec[η − η̄] = 0. Thus, we have:

FOCγ|γ=0 :

∫ ηH

ηL

∫ F̂

FL

1

B2
QQ

(
BQEB

2
Qη(η − η̄)2 −BQQBEFBQη(η − η̄)(F − F̂ )

)
w(F |η)v(η)dFdη = 0,

(73)
which implies:

sign FOCγ|γ=0 = sign

(
Ec[(η − Ec[η])2]− BQQBEF

BQEBQη

Ec[(F − F̂ (Ec[η]))(η − Ec[η])]

)
(74)

Equation (74) therefore demonstrates that the sign of FOCγ|γ=0, which in turn dictates
the sign of γ∗, depends on the difference between the variance of η (conditional on the
standard binding) and the covariance of η with F (again conditional on the standard binding,
and weighted by BQQBEF/BQEBQη). Thus, if the correlation between η and F is sufficiently
large, the optimal γ can be strictly negative. Also note that if F is non-stochastic, equation
(73) reduces to equation (65), evaluated at γ = 0.

A.6 Attribute-basing a standard that is already output-based

This appendix assesses how the main result from section 3.1 and appendix A.3—that the
optimal amount of attribute-basing is zero when there is only uncertainty in F—is affected
when the standard in question is already output-based. Put another way, is there a case for
attribute-basing a standard that is already output-based?

The economic environment now includes emissions E, output Q, and the attribute A.
The planner’s problem is to choose the µ0 and γ parameters for an output and attribute-
based standard given by E ≤ µ0+λQ+γA, where λ > 0 is pre-determined and the objective
function is:

max
µ0,γ

∫ FH

FL

(B(Q(µ0, λ, γ, F ), A(µ0, λ, γ, F ), E(µ0, λ, γ, F ), F )− φE(µ0, λ, γ, F ))w(F )dF.

(75)
The agent’s problem, when the standard binds, is to choose Q and A to maximize

B(Q,A, µ0 + λQ+ γA, F ). The agent’s FOCs are:

BQ(Q,A, µ0 + λQ+ γA, F ) = −λBE(Q,A, µ0 + λQ+ γA, F ) (76)

BA(Q,A, µ0 + λQ+ γA, F ) = −γBE(Q,A, µ0 + λQ+ γA, F ) (77)

The implicit function theorem then leads to the following comparative statics when eval-
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uated at γ = 0:44

dQ

dµ0

=
−1

S

(
λBEEBAA +BQEBAA − λB2

AE −BQABAE

)
(78)

dQ

dγ
=
dQ

dµ0

A+
BE(Q,A, µ0 + λQ, F )

S
(λBAE +BQA) , (79)

where S is the determinant of the Hessian and is assumed to be strictly greater than zero
(so that the SOC holds).

The planner’s FOC for µ0, evaluated at γ = 0, is given by:

FOCµ0|γ=0 :

∫ F̂ (µ0,λ,γ)

FL

(
BQ

dQ

dµ0

+BE
dE

dµ0

− φ dE
dµ0

)
w(F )dF = 0, (80)

where BQ and BE are shorthand for BQ(Q,A, µ0 + λQ, F ) and BE(Q,A, µ0 + λQ, F ), and
there is no term involving BA because BA = 0 at γ = 0, per equation (77). Now apply
equation (76) and the fact that dE/dµ0 = 1 + λdQ/dµ0 to obtain:

FOCµ0|γ=0 :

∫ F̂ (µ0,λ,γ)

FL

(
BE(1 + λ

dQ

dµ0

)− λBE
dQ

dµ0

− φ(1 + λ
dQ

dµ0

)

)
w(F )dF = 0 (81)

⇔
∫ F̂ (µ0,λ,γ)

FL

(
BE − φ− φλ

dQ

dµ0

)
w(F )dF = 0. (82)

The planner’s FOC for γ, evaluated at γ = 0, is given by:

FOCγ|γ=0 :

∫ F̂ (µ0,λ,γ)

FL

(
BQ

dQ

dγ
+BE

dE

dγ
− φdE

dγ

)
w(F )dF = 0, (83)

where again there is no term involving BA because BA = 0 at γ = 0. The sign of equation
(83) dictates whether, and in what direction, the output-based standard should also be
attribute-based.

Now apply equation (76) and the fact that dE/dγ = A+ λdQ/dγ to obtain:

FOCγ|γ=0 :

∫ F̂ (µ0,λ,γ)

FL

(
BE(A+ λ

dQ

dγ
)− λBE

dQ

dγ
− φ(A+ λ

dQ

dγ
)

)
w(F )dF = 0 (84)

⇔
∫ F̂ (µ0,λ,γ)

FL

(
(BE − φ)A− φλdQ

dγ

)
w(F )dF = 0. (85)

44I focus on deriving results that hold at γ = 0 because the agent’s comparative statics and then the
planner’s problem become intractable otherwise.
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Finally, substituting equation (79) yields:

FOCγ|γ=0 :

∫ F̂ (µ0,λ,γ)

FL

((
BE − φ− φλ

dQ

dµ0

)
A− φBE

S
(λ2BAE + λBQA)

)
w(F )dF = 0.

(86)
A is constant at γ = 0, so the left term inside the integral in (86) therefore equals zero,

assuming µ0 is chosen optimally per equation (82). φBE/S is strictly positive, so the sign of
the optimal gamma is given by the sign of −(λ2BAE + λBQA).

First, note that if λ = 0, so that the standard is not output-based, the optimal γ then
equals zero as well, agreeing with the original results in section 3.1.

Now, suppose λ > 0 and that either BAE > 0 or BQA > 0. In the fuel economy context,
the former holds if emissions abatement is costlier for larger vehicles, and the latter holds if
the marginal utility of miles traveled is greater for larger vehicles. In either of these cases,
equation (86) tells us that the optimal γ is strictly less than zero. That is, the optimal
standard is reverse attribute-based.

The intuition for this result follows the theory of the second-best. Output-basing (λ > 0)
creates a distortion to Q, particularly for low realizations of F . If BAE > 0, then reverse
attribute-basing with γ < 0 will cause agents to reduce E, and therefore Q, for low realiza-
tions of F , thereby partially mitigating the distortion to Q. If BQA > 0, there is an even
more direct benefit to reverse attribute-basing, since forcing agents to choose a lower A at
low realizations of F directly reduces their marginal value of Q.

A-13



B Additional detail for numerical calibration

B.1 Footprint-based fuel economy standards

To calibrate BQQ, I begin with table 3, column (2) in Ito and Sallee (2018), which provides
an estimate of BQQ of -$0.230/kg2. To convert this estimate from $ per kg2 to $ per ft4,
I use Whitefoot and Skerlos (2012), which finds that a 1 log point increase in footprint is
associated with an increase of 0.53 to 1.31 log points in weight, depending on specification.
I roughly split the difference and assume that weight and footprint are 1:1 in logs. Finally,
data provided by Leard, Linn, and McConnell (2017) indicate that in 2012, the average U.S.
vehicle had a footprint of 56.8 ft2 and weighed 3666 lb. Multiplying Ito and Sallee’s (2018)
-$0.230/kg2 by the square of this weight-to-footprint ratio yields the BQQ of -$197/ft4 in
table 2.

I obtain BEE from National Research Council (2015), which estimates “pathways” by
which fuel economy can be improved via sequential addition of fuel-saving technology to a
baseline vehicle. I follow the procedure discussed in Kellogg (2018) to derive BEE = -$1756
per (gallon/100 miles)2 from National Research Council (2015).

I derive BQE from the fact that the actual slope parameter γ for U.S. fuel economy
regulations was drawn to match −BQE/BEE, the rate at which private agents increase E
with Q. The average slopes for 2017–2025 vehicles in the final rule (77 FR 62623, p.62782)
are 3.87g CO2 per ft2 for cars and 4.04g CO2 per ft2 for trucks. Averaging these two values,
applying the gasoline emissions factor of 8.91 kg CO2 per gallon (EIA 2011), and multiplying
by BEE yields the $77.9 per (gal·ft2/100mi) in table 2.

When calculating the value of BEF , I use the new vehicle data from Busse, Knittel, and
Zettelmeyer (2013) that were originally sourced from the National Highway Transportation
Survey.

For the model’s initial condition in 2012, the average U.S. footprint and fuel economy (Q0

and E0) were 56.8 ft2 and 4.01 gal/100mi, respectively (Leard, Linn, and McConnell 2017).
I then compute Q̄ and Ē—the baseline 2012 footprint and fuel economy that would have
been chosen in the absence of regulation—by combining the model with data from Leard and
McConnell (2017) on the shadow value of the 2012 fuel economy constraint.45 To compute Q̄
and Ē from Q0 and E0, first let φ0 denote the shadow value of the actual 2012 fuel economy
standard. Define D = −(BEEγ0+BQE)/(BQEγ0+BQQ). Then Ē = E0−φ0/(BEE+BQED),
and Q̄ = Q0+(Ē−E0)D. The resulting Q̄ and Ē are 56.8 ft2 and 4.37 gal/100mi, respectively.

To compute F0 and σF , I use the tax-inclusive all grades and all formulations retail gaso-
line price series from the EIA,46 deflated to $2012 by the Bureau of Labor Statistic’s CPI for
all urban consumers, all items less energy, not seasonally adjusted (series CUUR0000SA0LE).
The three-year moving average price that I calculate for each month t uses data from t and
from the prior 35 months. I calculate t-month differences in this moving average using
observations from January, 2004 (the first month for which a ten-year difference can be cal-
culated) through 2012. Volatility increases with the time horizon: the one-month volatility
is $0.02/gal, while the ten-year volatility is $0.46/gal. I set σF equal to the average volatility

45Leard and McConnell (2017) derive a shadow price of $36 per metric ton of CO2 using information on
the price of tradeable fuel economy credits from Tesla Motors’ 2013 SEC 10-K filing.

46The EIA gasoline price data are available at https://www.eia.gov/dnav/pet/pet pri gnd dcus nus a.htm.
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across all horizons t ∈ [1, 120], yielding σF = $0.35/gal.
To estimate σQ, I first estimate an AR1 process for Q using the annual footprint data

from Leard, Linn, and McConnell (2017). I use only data through 2010, since after that time
fuel economy standards for cars became attribute-based and started increasing in stringency.
The process I estimate includes a time trend and results in an estimated AR1 coefficient ρ̂ =
0.48 and a root mean squared error σε = 0.16 ft2.47 Because the time series of footprints
only includes 15 observations, I use the bias correction originally proposed by Orcutt and
Winokur (1969) and suggested by MacKinnon and Smith (1998), and therefore set ρ =
(T ρ̂ + 1)/(T − 3) = 0.68. The volatility of footprint at a horizon of t years is then given
by σε

√
(1− ρ2t)/(1− ρ2). Calculating this expression for each year t = 1, 2, ...10 and then

averaging over ten years yields σQ = 0.21 ft2.
In an alternative specification, I assume a random walk with drift for Q. Under that

assumption, the standard deviation of first differences in Q is 0.17 ft2, and averaging volatility
over a projected ten-year horizon yields σQ = 0.39 ft2.

B.2 Fuel economy standards with endogenous miles traveled

I estimate σQ using historical data on average U.S. vehicle miles traveled (VMT) from the
Federal Reserve Bank of St. Louis.48 I use data from 1990–2010, during which time the U.S.
fuel economy standard for passenger cars was constant. To convert these data from total
miles traveled to miles traveled per vehicle, I scale them by multiplying by Q0 (defined in
footnote 26) and dividing by total miles traveled in 2012.

Because shocks to fuel prices F induce changes to miles traveled, I must adjust the miles
traveled time series for these shocks in order to isolate volatility induced by η. I do so by
subtracting, in each year t, miles traveled equal to dQ/dF · (Ft − F0), where F0 denotes the
2012 gasoline price of $3.69/gallon.49 Let Q̂ denote the time series of adjusted miles traveled.

I project annual volatility in Q̂ out over a 10-year policy horizon under the assumption
that Q̂ follows a random walk with drift.50 I first compute annual volatility by taking the
standard deviation of first-differences in the Q̂ series. The volatility of Q̂ at a horizon of t
years is then given by the product of the annual volatility with

√
t.51 I compute volatility

for each year t = 1, 2, ...10 and then average over ten years, yielding σQ = 3517 miles.

47When I test for a unit root using the augmented Dickey-Fuller test of Elliot, Rothenberg, and Stock
(1996), I obtain a test statistic of -3.08 at the Ng and Perron (2001) optimal lag length of 4, relative to 10%
and 5% critical values of -2.29 and -3.01, respectively. I search over lag lengths starting from a maximum of
4 lags, since the 7 lags implied by the Schwert (1989) criterion leave too few remaining observations to run
the estimator.

48Annual U.S. VMT data were accessed from https://fred.stlouisfed.org/series/TRFVOLUSM227NFWA
on 2 May, 2018

49dQ/dF is given by −BEF γ0/(BEEγ20 + 2BQEγ0 +BQQ), as derived for constrained agents in appendix
A.1, equation (19), where γ0 denotes the 2012 average fleet-wide fuel economy of 4.01 gallons per 100 miles.

50The AR1 coefficient from a regression of miles traveled on lagged miles traveled and a time trend is 1.04.
51Note that t is the limit, as ρ goes to 1, of the (1 − ρ2t)/(1 − ρ2) expression for the AR1 process from

appendix B.1.
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B.3 Electricity sector emissions standards

To calculate BQQ, I use the fact that dQ/dP = 1/BQQ. To translate the electricity de-
mand elasticity to dQ/dP , I use the value of U.S. total power consumption for 2015 of
Q̄ = 4078 TWh and the 2015 average retail price to residential end users of $0.127/kWh.
I sourced the former value from the EIA’s table of state-level generation, available at
https://www.eia.gov/electricity/data/state/annual generation state.xls. I sourced the lat-
ter value from the EIA’s 2016 Electric Power Annual Table 2.4. That table is available at
https://www.eia.gov/electricity/annual/archive/03482016.pdf.

To calibrate BEE, I use Cullen and Mansur’s (2017) estimate that a $40 per ton tax on
CO2 will reduce emissions by 7.9%, holding electricity output fixed, and the relationship
dE/dφ = 1/BEE. To translate Cullen and Mansur’s (2017) percentage result to a result in
levels, I use Ē = 2031 Mmton CO2 for 2015, per the EIA’s 2015 Electric Power Annual,
available at https://www.eia.gov/electricity/annual/html/epa 01 02.html.

I estimate BEF using logic from Cullen and Mansur (2017) that the effects of changes
in the price of natural gas, Pg, can be mapped to the effects of carbon pricing, given the
difference in CO2 emissions between coal and natural gas. Cullen and Mansur (2017) shows
that the change in Pg locally equivalent to a $1/Mmton change in the carbon price, equivalent
to 1/BEF , is given by (CR · CO2g − CO2c)/CR, where CO2g and CO2c are the carbon
intensities of natural gas and coal, respectively, and CR denotes cost ratio of coal to gas in
the absence of carbon pricing. The input values for CO2g and CO2c are 117.00 and 210.86
pounds CO2/mmBtu, respectively, from Cullen and Mansur (2017). To calculate CR, I use
the 2015 average delivered coal price of $42.58 per short ton from table 34 of the 2016 EIA
Annual Coal Report, the 2015 conversion of 19.15 mmBtu per short ton from table A5 of
the EIA Monthly Energy Review, and the EIA’s 2015 average purchased price of natural gas
of $3.29/mmBtu (data discussed below).

The monthly front-month natural gas futures prices that I use to calculate σF are available
from the EIA at https://www.eia.gov/dnav/ng/hist/rngc1m.htm. I deflate these data to
January, 2016 dollars using the CUUR0000SA0LE CPI series from the BLS. I use these data
rather than purchase prices for the electric power sector (discussed below) because those
prices are available at a monthly frequency only back to 2002.

To estimate σQ, I use national-level electric generation data that are available from the
EIA at https://www.eia.gov/electricity/data/state/annual generation state.xls. I must first
adjust the generation time series for changes induced by fluctuations in the price of natural
gas. I use annual EIA data on the purchase price of natural gas for the electric power sector,
covering 1997–2018, and available at https://www.eia.gov/dnav/ng/hist/n3045us3A.htm. I
deflate these prices to January 2016 dollars using the CUUR0000SA0LE CPI series from the
BLS, and I convert them from $ per thousand cubic feet to $/mmBtu using a conversion
factor of 1.036 mmBtu/mcf from https://www.eia.gov/tools/faqs/faq.php?id=45. I also use
a value of dQ/dF calculated via equation (13), for unconstrained agents, in appendix A.1.

Note that, unlike the two passenger vehicle applications, changes in the price of natural
gas directly affect the marginal value of Q, holding E fixed, since the gas price directly affects
the marginal cost of power (i.e., BQF 6= 0). Because I adjust the generation data only for the
indirect effect of gas prices on Q, via equation (13), the direct effect of F on Q in the data
is incorporated into my estimate of ση. Though this direct effect should induce a positive
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correlation between F (= −Pg) and η, I estimate an overall small negative correlation of
-0.06, since shocks to power demand are on average negatively correlated with F . In the
calibration I enforce ρ = 0.

I project annual volatility in adjusted generation Q̂ out over a 15-year policy horizon
under the assumption that Q̂ follows a random walk with drift.52 My computation of this
projection follows the same procedure that I used in the miles traveled application, discussed
in appendix B.2.
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