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Abstract

What are the implications of gasoline price volatility for the design of fuel economy
policies? I show that this problem has a strong parallel to Weitzman’s (1974) classic
model of using price or quantity controls to regulate an externality. Changes in fuel
prices act as shocks to the marginal cost of complying with the standard. Assuming
constant marginal damages from fuel consumption, an application of Weitzman (1974)
implies that a fixed fuel economy standard reduces expected welfare relative to a “price”
policy such as a feebate or, equivalently, a fuel economy standard that is indexed to
the price of gasoline. When the regulator is constrained to use a fixed standard,
I show that the usual approach to setting the standard—equate expected marginal
compliance cost to marginal damage—is likely to be sub-optimal because the standard
may not bind if the realized gasoline price is sufficiently high. Instead, the optimal
fixed standard will be relatively relaxed and may be non-binding even at the expected
gasoline price. Finally, I show that although an attribute-based standard allows vehicle
choices to flexibly respond to gasoline price shocks, the resulting distortions imply that
the optimal fuel economy standard is not attribute-based.
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1 Introduction

In October 2012, the U.S. Environmental Protection Agency (EPA) and the National High-

way Transportation and Safety Administration (NHTSA) jointly issued new fuel economy

standards for U.S. light-duty vehicles. These standards are scheduled to become increasingly

stringent over time, reaching a fleet-wide average fuel economy of 55 miles per gallon in 2025.

When the standards were issued, the EPA and NHTSA scheduled a “mid-term review” in

2017–2018 to determine whether the standards for 2022–2025 should be revised. Thus, the

standards set in 2012 were locked in place through 2021—nine years after the standards

were set—and any revisions made in 2017–2018 will be locked in for seven years. The EPA

concluded the mid-term review in January, 2017, affirming the original 2022–2025 standards.

Two months later, however, the new administration opened a review of that decision. This

new review is scheduled to conclude in April, 2018.

Throughout the debate over the 2022–2025 standards, there has been discussion among

industry participants and regulators of whether the standards should be loosened given the

substantial decrease in gasoline prices since the standards were set. In October 2012, the pre-

vailing U.S. average gasoline price was $3.45/gallon, but by January 2016 the price had fallen

to $1.51/gallon.1 Because consumers’ willingness to pay for fuel-efficient vehicles depends on

fuel prices (Allcott and Wozny 2014; Busse, Knittel, and Zettelmeyer 2013; Sallee, West, and

Fan 2016), this decrease in the price of gasoline has increased the cost of complying with the

new fuel economy standards and therefore raised concerns as to whether the regulatory path

set in 2012 should be sustained. For instance, in April 2015, a spokesperson for the Alliance

of Automobile Manufacturers said that “Given the extremely long 15-year lead time for the

standards, the government set a mid-term review in 2017 as a reality check for regulatory

assumptions. One of the assumptions was that the price of gas would be much higher than

today, and that affects what consumers buy. Sales of our most fuel-efficient vehicles go up

1These prices are pre-tax and real $2016. See section 2.2 for a discussion of the gasoline price data used
in this paper.
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and down with the price of gasoline. A mid-term reality check is a good idea, especially

since our compliance is based on what consumers buy, not what we offer for sale.” (Detroit

News 2015).

Spurred by this policy question, this paper examines the welfare economics of fuel econ-

omy standards under uncertain future gasoline prices and therefore uncertain future compli-

ance costs. I begin by framing the problem in the context of Weitzman’s (1974) “Prices vs

Quantities”, which facilitates a welfare comparison of a standard that varies with the gasoline

price versus a standard that is fixed in place. I present a model in which the private benefits

of fuel economy that accrue to vehicle producers and consumers are moderated by the price

of gasoline so that, absent regulation, private agents will choose fuel efficient vehicles when

gasoline prices are high and inefficient vehicles when gasoline prices are low. Fuel economy

policy is motivated in the model by climate change externalities that are associated with

vehicles’ fuel consumption per mile. In this framework, a fuel economy standard that varies

with the price of gasoline—allowing greater fuel use per mile when the gasoline price falls but

tightening when the gasoline price rises—can be equivalent to a revenue-neutral “feebate”

that taxes inefficient vehicles and subsidizes efficient vehicles (since under a feebate agents’

fuel economy choices would also rise and fall with the gasoline price). Thus, in the language

of Weitzman (1974), a gasoline price-indexed fuel economy standard acts as a “price” policy.

In contrast, a traditional fixed standard acts as a “quantity” policy.

To distill intuition, I simplify the model so that, in the absence of uncertainty over

future gasoline prices, a feebate policy can achieve the first-best welfare outcome by acting

effectively as a tax on gasoline. Likewise, a fuel economy standard can achieve the first-

best by acting as a standard on the quantity of gasoline consumed. The key assumption

underpinning the paper is that the marginal external damage associated with vehicles’ fuel

use per mile is locally constant and unaffected by gasoline price shocks. Treating marginal

damage as constant in U.S. vehicle emissions is a natural consequence of the fact that CO2—
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the primary driver of the externality—is a global stock pollutant (Newell and Pizer 2003).2

The paper’s first result has been intuited by others (Anderson and Sallee 2016) and

is a direct application of Weitzman (1974): indexing the fuel economy standard to the

price of gasoline—or, equivalently, using a revenue-neutral feebate—can achieve the first-

best with uncertain fuel prices because it can equate the marginal cost of abatement with its

marginal benefit at any fuel price. This result can also be seen as an application of models

of general indexed regulation (Ellerman and Wang 2003; Newell and Pizer 2008), where the

index variable (the gasoline price) is perfectly correlated with marginal compliance cost. In

contrast, a fixed fuel economy standard will result in an excessive marginal abatement cost

(and too much abatement) when fuel prices are lower than what was expected when the

policy was set, and too small a marginal abatement cost (and too little abatement) when

realized fuel prices are high. In either case, there is a welfare loss relative to the first-best.

I focus the remainder of the paper on the question of how best to set a fuel economy

standard when it cannot be indexed to the gasoline price and cannot be changed for many

years once it is set. Following a first order condition (FOC) from Weitzman (1974), the usual

rule for setting such a fixed standard is to equate the expected marginal cost of compliance,

evaluated at the standard, to the marginal external harm. I show, however, that this policy

rule ignores the non-trivial probability that if the realized gasoline price is sufficiently high,

the standard will not bind. That is, firms and consumers may, if the gasoline price is high

enough, voluntarily select a level of fuel economy that exceeds the standard. I derive a

new first order condition that accounts for this possibility and show that the optimal fixed

standard equates expected marginal compliance cost, conditional on the standard binding, to

marginal external harm. This optimal standard is more lax than that implied by the usual

Weitzman (1974) rule, and I show that given historic gasoline price uncertainty and estimates

of marginal damage from the literature, the difference between the optimal standard and the

2Even if marginal damage were not locally constant, setting a tax or feebate schedule would achieve the
first-best and welfare dominate a fixed standard in the presence of fuel price uncertainty, per arguments
given in Kaplow and Shavell (2002).
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usual Weitzman (1974) standard can be economically large. In fact, the optimal standard

may be so lax that it is non-binding even at the expected future gasoline price. I also derive

an expression for the expected welfare loss (relative to the first-best) under a fixed and

possibly non-binding standard, and I show that a standard set using the usual Weitzman

(1974) FOC may yield lower welfare than that obtained by not setting any standard at all.

Brozovic, Sunding, and Zilberman (2004) also studies optimal pollution control standards

that may not bind, using a model with two discrete firm types. The results presented here

expand on this prior work by presenting intuitive formulas for the optimal standard and

expected welfare loss under a continuous distribution of abatement cost uncertainty, and by

calibrating the model to demonstrate that its implications are economically significant for

fuel economy regulation. Another related paper is Costello and Karp (2004), which examines

the merits of setting a potentially non-binding pollution standard to learn about a firm’s

marginal abatement cost.3

Finally, I study whether basing the fuel economy standard on vehicle attributes such

as footprint or weight can mitigate the welfare losses associated with a fixed standard.

The U.S. fuel economy standards set in 2012 are in fact footprint-based: vehicles with a

large wheelbase are assigned a less stringent standard, as shown in figure 1. Ito and Sallee

(forthcoming) shows, using a model similar to that presented here but assuming complete

information, that attribute-based regulation (ABR) reduces welfare by distorting choices

of the attribute: consumers purchase vehicles that are larger than optimal.4 When the

gasoline price is uncertain, however, ABR may confer benefits by building flexibility into

the regulation, as suggested in Anderson and Sallee (2016). For instance, if the gasoline

price is lower than expected, agents can shift to vehicles with larger footprints and lower

fuel economy, mitigating the increase in the marginal abatement cost. As noted by Lutsey

(2015), this flexibility benefit of ABR was highlighted in General Motors’ public comments

3Costello and Karp’s (2004) model is structured so that, in the absence of an incentive to learn, the
optimal standard always binds.

4Whitefoot and Skerlos (2012) and Gillingham (2013) also illustrate the incentive to increase vehicle size
under ABR, using models that allow for automakers’ market power.
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(2009) on the proposed regulation. In addition, the response of vehicle choices to fuel prices

was modeled by NHTSA in its Regulatory Impact Analysis (2012), and Leard, Linn, and

McConnell (2016) finds evidence that the recent fuel price decrease has indeed modestly

affected fleet-average footprint and fuel economy. I show here, however, that even if fuel

prices are uncertain, attribute-basing reduces expected welfare relative to an optimally-

set non-attribute-based standard, since the distortions caused to the attribute and to fuel

economy outweigh the flexibility benefit.

The paper proceeds as follows. Section 2 describes U.S. fuel economy standards and

characterizes U.S. gasoline price volatility, and section 3 introduces the paper’s model of the

vehicle market. Section 4 then applies Weitzman (1974) to the comparison of fixed versus

gasoline price-indexed fuel economy standards. Sections 5 and 6 then present the main results

of the paper: section 5 discusses the optimal level for a fixed fuel economy standard, and

section 6 assesses whether an attribute-based standard can be welfare-improving. Section 7

discusses the potential importance of several non-modeled factors, such as covariance between

the gasoline price and marginal damage, banking and borrowing of fuel economy credits,

under-valuation of fuel economy by consumers, and firms’ investment dynamics. Section 8

concludes.

2 Policy background and gasoline price data

2.1 2012 EPA and NHTSA fuel economy standards

This section discusses the U.S. fuel economy standards set by the EPA and NHTSA in 2012,

focusing on three of their characteristics that are important for this paper: attribute-basing,

credit trading, and banking and borrowing. For additional information, see EPA (2012) or

the complete rule in the Federal Register (2012). Figure 1 shows the planned path of the

footprint-based fuel economy standard for passenger cars through 2025 (though the standards

for 2022–2025 are subject to revision in the ongoing EPA review). For any given footprint,
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Figure 1: U.S. EPA and NHTSA fuel economy standards for passenger cars through 2025

Source: Federal Register, Vol 77, No. 199, p. 62644 (15 Oct, 2012). For reference,

the 2012 model year Honda Fit, Ford Fusion, and Chrysler 300 have footprints of

40, 46, and 53 square feet, respectively.

the required level of fuel economy increases over time as technology is projected to advance.

In addition (and not shown), light trucks are assigned a separate set of footprint-based

standards that are less stringent than those for passenger cars. This separate treatment of

passenger cars versus light trucks is essentially a different form of attribute-basing, though

on a discrete rather than continuous variable.

Individual vehicle models are not required to meet their fuel economy target shown in

figure 1. Instead, each manufacturer must meet a fleet-wide standard based on the aggregated

compliance of all vehicles sold, including both passenger cars and light trucks.5 Moreover,

manufacturers can trade compliance credits with one another so that the entire industry faces

an identical marginal cost of compliance. Manufacturers may also engage in limited banking

and borrowing of fuel economy credits: unused credits may be banked for up to five years

5Any given model may exceed or fall short of its footprint-based standard, yielding the model’s manufac-
turer fuel economy credits or liabilities, respectively, proportional to the difference between the model’s fuel
use per mile and the model’s footprint-based standard.
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or used to cover deficits no more than three years in the past. Ultimately, each year every

manufacturer must either produce vehicles that in aggregate comply with its fuel economy

target or cover any deficit using credits obtained via trading, banking, or borrowing.6

2.2 Gasoline price variation

To motivate the problem of setting fuel economy policy under fuel price uncertainty, this

section establishes that U.S. gasoline price shocks have historically been both large and

persistent. I use data on gasoline prices obtained from the U.S. Energy Information Admin-

istration (EIA). Panel (a) of figure 2 illustrates the time path of U.S. gasoline prices before

and after the current fuel economy standards were set in October 2012. The prices shown

are monthly U.S. volume-weighted average refiner prices of motor gasoline for sale to end

users, pre-tax, and deflated to January 2016 U.S. dollars using the Bureau of Labor Statis-

tics’ Consumer Price Index for all goods less energy.7 The price of gasoline has exhibited

substantial volatility, ranging from roughly $1.00/gallon to $4.00/gallon since 2000.

I use the historical volatility of gasoline prices to generate estimates of the variance of

future gasoline prices that policy-makers face when setting fuel economy policy with a long

time horizon. Because the distribution of gasoline prices is right-skewed (panel (b) of figure

2), I assume that monthly price innovations are additive in logs, so that the future price

distribution is lognormal. I therefore estimate historic gasoline price volatility by taking the

standard deviation of differenced log prices. I use long differences to capture gasoline price

uncertainty over time horizons that are similar to fuel economy policy lifetimes. For instance,

the 2012 standard is locked-in until 2021—nearly a decade—and may be in effect through

2025 pending the outcome of the current EPA review. The volatility of ten-year differenced

6In the original U.S. Corporate Average Fuel Economy(CAFE) standard established in 1975, manufactur-
ers could also comply by paying fines. Fines are no longer a compliance mechanism under the current EPA
standards. Also, credit trading across manufacturers was not permitted under the original CAFE standard.

7Gasoline price data were accessed from https://www.eia.gov/dnav/pet/pet pri refoth dcu nus m.htm on
11 April, 2016. The CPI used covers all urban consumers and is not seasonally adjusted. The CPI series ID
is CUUR0000SA0LE.
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Figure 2: U.S. gasoline price variation

(a) Time series
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Note: Gasoline price data are monthly U.S. volume-weighted average refiner prices of motor gasoline for sale

to end users, obtained from the U.S. Energy Information Administration. These prices are pre-tax and are

deflated to January 2016 U.S. dollars using the Bureau of Labor Statistic’s Consumer Price Index for all

goods less energy (CPI series CUUR0000SA0LE).

log gasoline prices, estimated for January 2000 to January 2016,8 equals 0.42, equivalent

to 52%.9 The 95% confidence interval for gasoline prices ten years in the future therefore

encompasses prices more than twice or less than half of the expected future price. Volatilities

estimated using shorter differences naturally result in less uncertainty. The volatility of one-

month differences, for instance, is 0.085, and the volatility of one-year differences is 0.272.10

Finally, the data indicate that gasoline price shocks are highly persistent. The monthly

AR1 coefficient on the logged gasoline price since 2000 is 0.97, and a unit root cannot be

8Gasoline price data are available since January 1990, so January 2000 is the first month for which
ten-year lagged prices are available.

9Specifically, 0.42 is obtained by taking the standard deviation of the ten-year difference of the logged
gasoline price over January 2000 to January 2016. 52% is obtained by e0.42−1. The 95% confidence interval
for future prices is obtained by e0.42·1.96 and its reciprocal, yielding a range from 0.44 to 2.28 times the
expected price.

10Whenever I estimate volatility for differences of less than 10 years, I use the same gasoline price sample
used to estimate the ten-year volatility; i.e., a sample from January 2000 to January 2016. Note that as
the lag length increases, volatility increases at a rate less than the

√
t rule that would hold for a geometric

random walk (e.g., 0.085 ·
√

120 = 0.93 > 0.42), suggesting that price innovations in levels do not scale fully
proportionally with the current price level.
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rejected.11 This persistence is consistent with results on the relative accuracy of no-change

forecasts of the long-run real price of oil (Alquist, Kilian, and Vigfusson 2013) and relates

to evidence that consumers hold no-change beliefs about future gasoline prices (Anderson,

Kellogg, and Sallee 2013).

3 Model set up

This section introduces the model of the vehicle market that I use throughout the paper.

Like the model used in Ito and Sallee (forthcoming), I impose a number of simplifying

assumptions such that, under complete information, either a fuel economy standard or a

feebate can attain the first-best because they can mimic a quantity standard or a Pigouvian

tax on gasoline. In particular, I assume that consumers have unit demand for vehicles, fully

internalize future fuel costs when purchasing a vehicle, and do not respond to per-mile fuel

costs when selecting how many miles to drive (i.e., there is no “rebound effect”). I treat

vehicle manufacturers as perfectly competitive, and I abstract away from interactions with

the used car market and from interactions with other taxes or un-priced externalities.

These assumptions are all strong, and their implications for the efficiency of fuel economy

standards are discussed in Ito and Sallee (forthcoming) and many other works. However,

abstracting away from these issues conveys the substantial benefit of being able to obtain

analytical results and thereby distill intuition for the first-order implications of fuel price

uncertainty for fuel economy policy. Moreover, the fact that the model is not precisely

tailored to the features of the vehicle market facilitates linking the model to Weitzman

(1974) and enhances the generalizability of the paper’s findings to other pollution control

settings in the presence of uncertain marginal abatement costs. In section 7, I return to

several of the above assumptions, as well as other factors that are not explicitly modeled,

11Using the augmented Dickey-Fuller test of Elliot, Rothenberg, and Stock (1996), I obtain a test statistic
of -1.24 at the Ng and Perron (2001) optimal lag length of 10, relative to a 10% critical value of -2.567.
Similar results are obtained if the AR1 regression and unit root tests are carried out in levels rather than
logs, or if the full dataset back to 1990 is used.
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and discuss how relaxing them may affect the paper’s conclusions. And in appendix C, I

show that the “prices versus quantities” result holds when miles driven respond to per-mile

fuel costs, so long as the gasoline price elasticity of driving is not too large.

3.1 Private demand and supply of vehicles

I begin with the consumer side of the market. Consider a consumer i purchasing a vehicle

with fuel consumption per mile ei and attribute ai.
12 ai can represent a single attribute that

can ultimately be targeted by the regulation (i.e., the vehicle’s footprint), or more abstractly

a scalar composite of multiple attributes. The price of gasoline at the time of purchase

is given by G. I then denote consumer i’s indirect utility from this vehicle purchase by

U i(ei, ai, G)−Pi, where Pi is the price of the vehicle and U i(ei, ai, G) is a twice continuously

differentiable function. This specification implicitly assumes that consumer utility is quasi-

linear, with all other goods as a numeraire.

Increases in ei reduce utility because increased fuel consumption per mile implies in-

creased expenditure on fuel; thus, the derivative U i
e < 0. Because each consumer’s vehicle

miles travelled is exogenous and utility is quasi-linear, the second derivative U i
ee equals zero.13

The disutility from a vehicle’s fuel use increases in magnitude with the price of gasoline at

the time of purchase (since gasoline prices are persistent), so that U i
eG < 0. U i

eG, moreover,

represents the consumer’s expected discounted miles travelled over the lifetime of the vehicle.

The attribute a is assumed to be desirable but with diminishing returns, so that U i
a > 0 and

U i
aa < 0. Quasi-linearity of utility implies that U i

aG = 0.

On the supply side of the market, vehicle manufacturers competitively produce vehicles

with a cost function C(ei, ai). Reducing the fuel use of any particular vehicle is costly, so

that Ce < 0, and there are diminishing returns to fuel economy investments, so that Cee > 0.

12It is convenient to model ei as fuel use rather than efficiency (= 1/ei) because environmental damage is
(locally) linear in fuel use but not efficiency.

13U i
ee = 0 also implies that consumers only value fuel efficiency for its monetary benefits, not because of

green preferences. To the extent that consumers have green preferences, fuel efficiency could also be viewed
as part of the characteristic a that consumers value with diminishing returns.
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Increasing the attribute a involves convex costs, so Ca > 0 and Caa > 0. Finally, letting

a represent attributes such as footprint, weight, or horsepower, reductions in e should be

weakly more costly for vehicles that have a large value of a. Thus, I assume Cea ≤ 0.

As in Weitzman (1974) and Ito and Sallee (forthcoming), I assume that the U i(ei, ai, G)

and C(ei, ai) functions can be approximated by second-order Taylor expansions and that

all of the U i have identical second derivatives, which substantially improves the model’s

tractability.14 Under these assumptions, appendix A shows that a sufficient statistic for

measuring impacts of fuel economy policy on aggregate (utilitarian) consumer welfare is the

representative consumer’s utility U(e, a,G) obtained from the average vehicle purchased,

where e is the average of the ei, a is the average of the ai, and the first derivatives of U equal

the average of the U i
e and U i

a. Likewise, the cost C(e, a) of the average vehicle purchased is

a sufficient statistic for aggregate production cost.15

Combining the two sides of the market, define B(e, a,G) ≡ U(e, a,G) − C(e, a) as the

private welfare benefit when the average vehicle purchased has fuel use per mile e and

attribute a, and the gasoline price is G. B(e, a,G) inherits the property that it can be

expressed as a second-order Taylor expansion, and its second derivatives have the properties

Bee < 0, Baa < 0, BeG < 0, Bea ≥ 0, and BaG = 0. I also naturally assume that Be(0, a, G) >

0 and Ba(e, 0, G) > 0 to allow for an interior private optimum.

Absent regulation, private agents will choose vehicles so that e and a satisfy the private

first order conditions (FOCs): Be(e, a,G) = 0 and Ba(e, a,G) = 0. I assume that the

second order condition (SOC), BeeBaa−B2
ea > 0, is satisfied, guaranteeing a unique, interior

solution.

14A necessary condition for the assumption that the U i
eG are identical is that all consumers share the same

annual vehicle miles travelled.
15The sufficient statistic claims hold for the policies considered in this paper: fuel economy feebates and

fuel economy standards that are implemented with cross-manufacturer credit trading, so that the marginal
cost of abatement is equated across all vehicle models. In the absence of trading, so that a standard can
bind against individual firms or even individual models, changes to the average vehicle sold are no longer
sufficient for understanding welfare impacts.
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3.2 Externalities from fuel consumption and the social optimum

Let φg denote the constant marginal damage resulting from consuming one gallon of gaso-

line.16 Then define φ ≡ −BeGφg as the marginal damage caused by an increase in a vehicle’s

fuel use per mile, discounted over the lifetime of the vehicle. The full-information social

planner’s problem is then given by:

max
e,a

B(e, a,G)− φe (1)

The planner’s FOCs are then given by Be(e, a,G) = φ and Ba(e, a,G) = 0,17 and the

SOC is identical to that in the private agents’ problem. Intuitively, the planner’s solution

involves a lower e than the private optimum, but conditional on the choice of e the planner

chooses the same a as private agents, since the attribute does not create an externality on

its own.18

For the results in sections 4 through 6, it will be useful to discuss the externalities that are

included in φg as well as estimates of their magnitudes. The median social cost of CO2 used by

the U.S. Government (Interagency Working Group 2013) for 2015 is $38 per metric ton, with

a range from $12/ton to $58/ton under alternative discount rate assumptions, and a value of

$109/ton under a “right-tail” damage assumption. These values translate to $0.30/gallon,

$0.10/gallon, $0.47/gallon, and $0.87/gallon of gasoline, respectively.19 In addition to the

climate externality, a survey by Parry, Wells, and Harrington (2007) considers externalities

from U.S. dependency on foreign oil, concluding that “a corrective tax might be anything

from roughly 8–50 cents (excluding geo-political costs); a recent panel of experts (National

16Per Weitzman (1974), the results of the paper are unchanged if φg is defined as the expected value of
uncertain marginal damages, so long as the stochastic component of marginal damage is uncorrelated with
G. In this case, what the paper describes as “first-best” is first-best subject to incomplete information about
marginal damage. Section 7.1 discusses implications of a potentially non-zero correlation between marginal
damage and G.

17I assume that Be(0, a,G) > φ, so that the planner’s problem has an interior solution.
18I am abstracting away from effects of attributes such as footprint, size, and type (car vs. truck) on

accident risk, which are examined empirically in Jacobsen (2013) and Anderson and Auffhammer (2014),
and discussed in Ito and Sallee (forthcoming).

19Per EIA (2011), one gallon of E10 gasoline produces 17.68 pounds of CO2.
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Research Council 2002) recommended a value of 12 cents per gallon”. Combining these

costs with the climate externality yields a range for φg from $0.18/gallon to $1.37/gallon; I

focus below on a “median” estimate of $0.42/gallon.20 Finally, Parry et al. (2014) discusses

externalities from gasoline consumption associated with local pollutants, congestion, and

accident risk.21 Because these externalities are associated with miles driven and not fuel use

per mile, I do not include them in φg for the purpose of regulating fuel economy.22

4 Prices versus quantities

This section applies Weitzman (1974) to evaluate the welfare implications of a fixed fuel

economy standard versus a feebate or, equivalently, a gasoline price-indexed standard. Be-

cause I do not consider an attribute-based standard until section 6, this section and section 5

will suppress the attribute a so that the private benefit function is simply given by B(e,G).23

The model proceeds in two stages. In the first stage, the regulator must commit to a par-

ticular level for the standard or the feebate, without knowing what the realized gasoline

price will be in the second stage. Then in stage 2 agents choose vehicles conditional on the

regulation and the realized gasoline price. I model stage 2 as a single compliance period,

though it is straightforward to extend the model so that stage 2 involves multiple compliance

periods with different price realizations.

Letting G denote the realized gasoline price in stage 2, let F (G) denote the policy-maker’s

stage 1 rational belief about the distribution of G. F (G) has support on [GL, GU ], where

GL ≥ 0 and GU is possibly infinite. The expected stage 2 price is Ḡ, and the variance of G

is σ2.

20$0.42/gallon is the sum of $0.30/gallon for climate and $0.12/gallon for foreign oil dependency.
21Parry et al.’s (2014) estimates for the United States are $0.09/gallon for local pollutants, $0.85/gallon

for congestion, and $0.37/gallon for accidents, all in 2010 U.S. dollars.
22Fuel economy improvements will not affect emissions of local pollutants in the U.S. because these pol-

lutants are regulated under separate per-mile emission standards. Fuel economy regulation will only affect
congestion and accidents indirectly via the rebound effect and impacts on vehicles’ size and weight.

23Under non-attribute based regulation, agents will always choose the socially optimal (= privately opti-
mal) level of a conditional on the regulated choice of e.
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Suppose that a tax is imposed on each vehicle in proportion to its fuel use per mile.

Letting τ denote the tax rate, the tax on the representative vehicle is then given by τe. If the

tax revenues are redistributed lump-sum, this tax is equivalent to a revenue-neutral feebate

that taxes inefficient vehicles and subsidizes efficient vehicles.24 It is straightforward to see

that by setting τ = φ, the regulator can achieve the full-information first-best: the feebate is a

Pigouvian tax, so it causes agents to perfectly internalize the externalities of fuel consumption

per mile at any gasoline price level. This feebate is equivalent to a fuel economy standard

that is indexed to gasoline prices so that the targeted fleet-wide average fuel consumption

rises (falls) when gasoline prices fall (rise). The feebate, however, involves a substantially

lower informational requirement for the regulator than the indexed fuel economy standard:

the latter requires information on φ and the parameters of B(e,G), while the former only

requires information on φ.

Now suppose that the regulator instead sets a fixed fuel economy standard such that

fleet-wide average fuel use per mile cannot exceed the value µ. The “usual” FOC for the

solution to the regulator’s problem is to equate the expected marginal compliance cost at µ

to marginal damage, as discussed in Weitzman (1974):

E[Be(µ,G)]− φ = 0, (2)

where E[Be(e,G)] = Be(e, Ḡ) due to the linearity of Be. I show in section 5 below that

equation (2) does not yield the optimal standard if there is a possibility that the standard

may not bind. Putting that possibility aside for now, the standard implied by equation (2)

will only yield the first-best in the event that the realized gasoline price is Ḡ. Generically,

however, the standard µ̃ (in gallons per mile) that solves (2) will either be too low (if G < Ḡ)

or too high (if G > Ḡ) relative to the first best, resulting in a marginal abatement cost that

is, respectively, either too high or too low. The resulting welfare loss is illustrated in figure

24The tax or subsidy on any given vehicle is proportional to the difference between that vehicle’s fuel use
and that of the average vehicle.
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Figure 3: Welfare from a fixed fuel economy standard that always binds
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Note: e denotes fuel consumed per mile, and Be(e,G) is its marginal benefit. φ

denotes marginal damage. Gasoline prices are distributed on {GL, GU}. µ̃ is the

optimal fixed standard. See text for details.

3 for the simple case where f(G) has two point masses at GL and GU . Given a standard µ̃

set to satisfy FOC (2), and under the Taylor series approximation for B(e,G), the expected

welfare loss per vehicle ∆ is equal to a Harberger triangle with height −σBeG (the standard

deviation of marginal abatement cost) and width σBeG/Bee. Thus, ∆ =
−σ2B2

eG

2Bee
. This result

is a direct analogue of the ∆ from Weitzman (1974) in the case where marginal damages are

constant, and its formal derivation is given in appendix B.1.

In contrast, a feebate with τ = φ allows the chosen level of fuel use e to shift with the

gasoline price, so that the marginal abatement cost Be(e,G) is constant and always equal

to φ, and the first-best is realized. An appropriately-set gasoline price-indexed standard can

achieve the same end.

The price of gasoline during the compliance period is the only source of uncertainty in

this paper’s model. In principle, it is straightforward to extend the model to also allow for
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uncertainty about fuel economy technology, since shocks to the intercept of the marginal

cost function Ce(e) are isomorphic to gasoline price shocks.25 Including such shocks in

the model would increase the variance of the marginal cost of complying with a fixed fuel

economy standard beyond the variance caused by gasoline price volatility alone. Moreover,

conditioning the fuel economy standard solely on the price of gasoline would no longer be

sufficient to achieve the full-information first-best. Instead, the standard would also have

to be conditioned on the state of fuel economy technology, which may present practical

challenges since technological evolution is more challenging to objectively measure than the

price of gasoline.

5 The optimal level of a fixed standard

Suppose that a feebate or gasoline price-indexed fuel economy standard is not a tool in the

regulator’s choice set. Instead, the regulator must set a fixed fuel economy standard, knowing

that whatever standard it sets will be locked in place for many years. These restrictions are

strong, but they are reflective of the way fuel economy policy has been implemented in

the United States. As discussed above, the usual, intuitive way to set the standard in this

situation, following Weitzman (1974) and expressed in equation (2), is to equate the expected

marginal compliance cost at the standard to marginal damage. Doing so is equivalent to

adding marginal damage per gallon φg to the expected future gasoline price Ḡ and setting

the standard at the level of fuel consumption per mile that private agents would voluntarily

choose at that price. Denote this standard, which solves (2), by µ̃.

This approach to setting the standard is incorrect, however, when uncertainty about

marginal compliance cost is sufficiently large that a standard set at µ̃ may not bind. The

25To see this isomorphism, observe that shocks to the intercept of Ce(e) (e.g., via a stochastic technology
variable η that vertically shifts the affine Ce(e) function) result in an identical but oppositely-signed vertical
shift to the net marginal benefit function Be(e) (holding G constant), since Be(e,G) = Ue(e,G) − Ce(e).
Gasoline price shocks are isomorphic to these technology shocks because they also shift Be(e) vertically
(scaled by BeG). More generalized shocks to fuel economy technology may change the slope of Ce(e): such
shocks would not be isomorphic to gasoline price shocks (because they would change the value of Bee) and
would take the model outside of the Weitzman (1974) framework.
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problem lies in that fact that, for a sufficiently negative shock to marginal compliance cost,

private agents will on their own choose to consume less fuel than what is prescribed in the

standard. To see that this possibility is non-trivial in the case of fuel economy regulation,

it is useful to compare the variance of future gasoline prices, discussed in section 2.2, to

estimates of φg, discussed in section 3.2. Looking ten years forward, the 95% confidence

interval for the future price of gasoline encapsulates a doubling or a halving of the current

price (under a no-change forecast for the expected future price). There exists, therefore, a

substantial probability that the price of gasoline may increase by more than $1.00/gallon

over a ten-year policy horizon. Such an increase exceeds most estimates of φg. Thus, the

realized future price of gasoline may exceed the sum of Ḡ and φg, so that a policy set at

µ̃ using equation (2) may not bind. Given this possibility, what then is the ex-ante welfare

maximizing level of the standard?

5.1 First order condition for an optimal fixed standard

To optimally set the level of the fuel economy standard, it is useful to write the regulator’s

problem in a way that makes clear that there is a critical gasoline price, Ĝ(µ), such that for

G > Ĝ(µ) a given standard µ will not bind:

max
µ

∫ Ĝ(µ)

GL

(B(µ,G)− φµ) f(G)dG+

∫ GU

Ĝ(µ)

(B(e(G), G)− φe(G)) f(G)dG (3)

where e(G) denotes agents’ choice of e given a gasoline price realization G. Taking the

derivative yields the first order necessary condition for an optimal standard:26

∫ Ĝ(µ)

GL

(Be(µ,G)− φ)f(G)dG = 0. (4)

26The terms in the derivative of (3) from Leibniz’s Rule involving dĜ/dµ cancel out. Under the assumption
that Be(e,G) is continuously differentiable, this derivative is continuous if f(G) does not have any point
masses. If f(G) has point masses (as in the case presented in figures 3 and 4, for example), then the derivative
will discontinuously jump up as µ increases at each value of µ for which Ĝ(µ) falls on a point mass. Because
the derivative can only jump up but not down, the optimal standard µ∗ will never have Ĝ(µ∗) fall on a point
mass, so FOC(5) is still a necessary condition for an optimal standard even when f(G) has point masses.
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Dividing through by F (Ĝ(µ)) yields

1

F (Ĝ(µ))

∫ Ĝ(µ)

GL

Be(µ,G)f(G)dG− φ = 0. (5)

The first term of FOC (5) is the expected marginal compliance cost conditional on the

gasoline price being sufficiently low that the regulation binds. For any standard µ such that

Ĝ(µ) < GU , this conditional expected marginal compliance cost will be strictly greater than

E[Be(µ,G)] from equation (2), since BeG < 0. Thus, if the µ̃ standard that solves (2) may

be non-binding, its conditional expected marginal compliance cost will strictly exceed φ,

implying that µ̃ is not optimal. Instead, because Bee < 0, the optimal standard must be

more lax—and therefore involve greater fuel use—than the µ̃ standard.

This principle is illustrated in figure 4, which is similar to figure 3 in that the distribution

of fuel prices is concentrated on two point masses at GL and GU . In figure 4, however, the

standard µ̃ that solves the Weitzman FOC (2) does not bind if G = GU . If the standard is

increased—i.e., shifted to the right—beyond µ̃, observe that the welfare loss under the GL

price realization decreases while the welfare loss under the GU price realization is unchanged.

Thus, expected welfare can be improved by increasing the standard (in gallons per mile).

The optimal standard is µ∗, where expected marginal compliance cost, conditional on the

standard binding, equals marginal external harm φ, as prescribed by equation (5). For this

simple two-point distribution of G, the welfare loss from the optimal standard is actually

zero whenever G = GL.

Under more general distributions of G, progress on characterizing the difference between

µ̃ and the optimal standard can be made by making use of the second order Taylor expansion

for B(e,G). Because Be(µ̃, Ḡ) = φ, we may write:

Be(µ,G) = φ+BeG(G− Ḡ) +Bee(µ− µ̃). (6)

Next, note that by the definition of Ĝ, Be(µ, Ĝ(µ)) = 0. Combining this fact with
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Figure 4: Welfare from a fixed fuel economy standard that does not bind for a high fuel
price
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Note: e denotes fuel consumed per mile, and Be(e,G) is its marginal benefit. φ

denotes marginal damage. Gasoline prices are distributed on {GL, GU}. µ̃ is the

fixed standard that solves equation (2). µ∗ is the optimal fixed standard that

solves equation (4). See text for details.

equation (6) yields Bee(µ− µ̃) = −φ− BeG(Ĝ(µ)− Ḡ), so that Be(µ,G) = BeG(G− Ĝ(µ)).

We can use this result to replace Be(µ,G) in equation (5) and then divide through by −BeG

to obtain:

− 1

F (Ĝ(µ))

∫ Ĝ(µ)

GL

(
φg − (Ĝ(µ)−G)

)
f(G)dG = 0 (7)

↔ Ĝ(µ) = E[G|G ≤ Ĝ(µ)] + φg (8)

Let µ∗ denote the solution to FOC (8). The optimal standard µ∗ has the property

that the gasoline price at which the standard binds is equal to the expected gasoline price,

conditional on the standard binding, plus the per-gallon marginal damage φg. In the event
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that the standard always binds (i.e., Ĝ(µ∗) ≥ GU), FOC (8) reduces to the usual condition

that the optimal standard compels agents to choose vehicles that they would have purchased

at a gasoline price equal to the unconditional expected gasoline price Ḡ plus φg.

The value of equation (8) is that it allows a calculation of Ĝ(µ∗)—the gasoline price

at which the optimal fuel economy standard will bind—given only a value for φg and a

distribution F (G).27 Table 1 shows the results of solving equation (8) for Ĝ(µ∗), using

several values for both φg and the time horizon over which the standard will be enforced.

Throughout, I assume that the expected price of gasoline, Ḡ, is $1.50/gallon (roughly the

same price as that prevailing in January 2016)28 and that F (G) is lognormal. For a given

policy horizon, I obtain the standard deviation of F (G) by averaging gasoline price volatilities

(calculated per the discussion in section 2.2) obtained from gasoline prices differenced over

one month (capturing low uncertainty immediately after the policy is implemented) through

prices differenced over the specified horizon length (capturing greater uncertainty at the end

of the policy’s compliance period).29

The middle three rows of table 1 use a value for φg of $0.42/gallon, the “median” exter-

nality estimate discussed in section 3.2. Under this estimate of φg, a fuel economy policy

that will be committed to for one year—over which the average gasoline price volatility is

25%—has an optimal binding price Ĝ(µ∗) of $1.80/gallon rather than the $1.92/gallon im-

plied by the “usual” policy of setting Ĝ(µ̃) = Ḡ+φg. Policies implemented over five-year and

ten-year horizons have optimal binding prices of only $1.65 and $1.60/gallon, respectively.

Intuitively, because uncertainty about G increases with the policy horizon, the optimal stan-

27Obtaining µ∗ itself requires knowledge of BeG and Bee.
28For higher values of Ḡ, the variance of the future gasoline price increases, holding volatility (based on

log prices) fixed. Because price variance enters equation (8) in levels, the difference between Ĝ(µ∗) and Ĝ(µ̃)
will increase with Ḡ.

29For instance, to obtain the one-year horizon volatility of 25% reported in table 1, I calculate the volatility
of one-month, two-month, three-month, ..., twelve-month gasoline price differences, and I then take the
average of these volatilities. In principle, the exact optimal gas price at which the standard binds should
minimize expected welfare losses across the full time horizon over which the standard is applied, rather than
be calculated from the average volatility over this time. I adopt the average volatility approach here both
because it is more straightforward to implement and because it directly connects to the paper’s analytical
model, especially equation 8.
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Table 1: Effects of fixed fuel economy standards for various externalities and gasoline price
volatilities. Expected future gasoline price Ḡ is $1.50 per gallon.

Gas price Ĝ at which Expected welfare loss as %
standard binds ($/gal) of loss from no regulation

Externality Policy Gas price “Usual” Optimal “Usual” Optimal
φg ($/gal) horizon volatility standard µ̃ standard µ∗ standard µ̃ standard µ∗

0.18
1 year 25% 1.68 1.34 181% 84%
5 years 38% 1.68 1.13 312% 90%
10 years 42% 1.68 1.06 367% 91%

0.42
1 year 25% 1.92 1.80 47% 43%
5 years 38% 1.92 1.65 76% 56%
10 years 42% 1.92 1.60 87% 59%

1.37
1 year 25% 2.87 2.87 6% 6%
5 years 38% 2.87 2.84 12% 12%
10 years 42% 2.87 2.83 14% 14%

Note: Calculations assume that F (G) is lognormal. Volatilities of 25%, 38%, and 42% are estimated by

averaging gasoline price volatilites over horizons from one month to 12 months, 60 months, and 120 months,

respectively. The gasoline price Ĝ(µ∗) at which the optimal fuel economy standard binds is calculated using

equation (8). See text for details.

dard becomes progressively more relaxed as the horizon length increases.

Table 1 also presents optimal values for Ĝ(µ∗) when the externality φg equals $0.18/gal-

lon or $1.37/gallon, the lowest and highest plausible values from the estimates discussed

in section 3.2. For φg = $0.18/gallon, the reduction in Ĝ(µ∗) at long policy horizons is

pronounced: a ten-year policy has an optimal binding price of only $1.06/gallon. Even for

a one-year policy, the optimal standard is actually non-binding at at the expected gasoline

price of $1.50/gallon. In other words, the optimal standard specifies more gasoline consump-

tion per mile than what private agents are expected to choose in the absence of regulation. In

contrast, at φg = $1.37/gallon the optimal policy is not substantially different from setting a

standard that binds at Ḡ+φg = $2.87/gallon, even if the policy will be applied for ten years.

This result stems from the fact that for such a large externality, it is unlikely that gasoline

prices will be so high that the standard will not bind. Thus, table 1 overall illustrates how,

given a distributional assumption on F (G), the difference between the optimal standard and

the usual Weitzman (1974) calculation depends entirely on how large the volatility of future

prices is relative to the externality, since these magnitudes govern the probability with which
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the standard will not bind and the size of the corresponding expected welfare loss.

It is important to emphasize that the optimal fixed standard µ∗ is still inferior from a

welfare perspective to a gasoline price-indexed standard or a feebate, as discussed in section

4. The µ∗ standard derived here is optimal only subject to the constraint that it is not

feasible for the regulator to make the standard contingent on the fuel price. The expected

welfare loss ∆ per vehicle for an optimal fixed standard µ∗ that may not bind is derived in

appendix B.1 and is given by

∆ = − B
2
eG

2Bee

(
F (Ĝ(µ∗))σ2

c + (1− F (Ĝ(µ∗)))φ2
g

)
, (9)

where σc denotes the standard deviation of fuel prices conditional on the standard bind-

ing.30 Expression (9) indicates that the expected welfare loss is given by a weighted average

of two Harberger triangles. First, with probability F (Ĝ(µ∗)) the standard will bind, and the

expected height and width of the triangle will be proportional to σc. Second, with probabil-

ity 1−F (Ĝ(µ∗)) the standard will not bind, and the height and width of the triangle will be

proportional to the externality φg. Note that if the optimal standard binds for all realizations

of G, then equation (9) reduces to the standard Weitzman (1974) formula, ∆ =
−σ2B2

eG

2Bee
.

One way to quantify the expected welfare losses ∆ for the parameters used in table

1 is to express them as a percentage of the losses that would be realized in the absence

of any regulation:
−φ2gB2

eG

2Bee
. This quantification does not require values for BeG or Bee.

These percentage losses are displayed in the right-most column of table 1. For optimally-set

standards, an intuitive pattern emerges that as gasoline price volatility increases relative

to the externality φg, the percentage improvement in welfare generated by the standard

is reduced. At the extremes, an optimal policy with a one-year horizon that addressed a

$1.37/gallon externality would eliminate 94% of the welfare loss from no regulation, while

a policy with a ten-year horizon addressing a $0.18/gallon externality would eliminate only

9% of the no-regulation welfare loss.

30That is, σ2
c ≡ Var(G|G ≤ Ĝ(µ)).
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Table 1 also displays the welfare implications of setting a standard via the “usual” policy

of Ĝ(µ̃) = Ḡ + φg. For the median externality estimate of $0.42/gallon and a policy with a

ten-year horizon, this expected welfare loss is 1.5 times that from the optimal standard.31 The

relative welfare loss from adopting the µ̃ policy rather than the optimal standard increases

as fuel price volatility becomes large relative to the externality. In the low externality case

of φg = $0.18/gallon, the µ̃ policy results in more than twice the welfare loss than that from

the optimal policy—and a greater loss than that from not imposing a standard at all—even

for a policy horizon of just one year.

Obtaining expected welfare losses in dollars per vehicle requires values for BeG and Bee.

BeG simply represents expected miles driven, discounted over the life of the vehicle. I follow

the assumptions of Ito and Sallee (forthcoming) that new vehicles are driven 12,000 miles per

year over a lifetime of 13 years, with a 5% discount rate, yielding BeG = 118,359 miles. Bee,

the rate at which the marginal cost of reducing e (fuel consumption per mile) increases as e

decreases, is more difficult to pin down. I use engineering estimates of the costs of fuel-saving

technologies from National Research Council (2015), which estimates “pathways” by which

fuel economy can be improved via sequential addition of fuel-saving technology to a baseline

vehicle. Fitting an affine marginal cost curve to these estimates, I obtain a value for Bee of

$1,756 per (gallon/100 miles)2.32 Using these estimates, implementing the optimal standard

for a ten year policy horizon results in expected welfare losses, relative to the first best, of

$12 per vehicle for φg = $0.18/gallon, $42 per vehicle for φg = $0.42/gallon, and $105 per

vehicle for φg = $1.37/gallon. Under the sub-optimal µ̃ standard, the losses are $48 per

31The 1.5 figure is the ratio of 87% versus 59% of the loss from no policy.
32I use the pathways presented in tables 8.4a and 8.4b of National Research Council (2015), which cor-

respond to a midsize gasoline-fueled car under the NRC’s low-cost and high-cost estimates, respectively.
These pathways account for interactions between technologies as they are added to a vehicle. Using the cost
estimates for 2017, I fit a line to the marginal cost curve for the technologies presented in each table. In each
case, I drop the highest-cost technology (cooled exhaust gas recirculation level 2) because it is an extreme
outlier (its MC is three times that of the next most costly technology) and because it is not required to meet
the 2025 standards. I obtain estimates of Bee equal to 1,474 using the low-cost estimates and 2,038 using
the high-cost estimates. The average of these two values equals the $1,756 per (gallon/100 miles)2 used in
the text. This value is similar to the $1,941 estimated in Parry, Fischer, and Harrington (2004) using data
from National Research Council (2002).
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vehicle, $61 per vehicle, and $105 per vehicle, respectively.

5.2 Second order condition for an optimal fixed standard

The results shown in table 1 assumed that satisfaction of FOC (4) was sufficient for opti-

mality.33 It is important, however, to consider the second order condition (SOC), which is

given by:

dĜ(µ)

dµ
(Be(µ, Ĝ(µ))− φ)f(Ĝ(µ)) +BeeF (Ĝ(µ)) < 0. (10)

We can simplify this condition by using the facts that dĜ(µ)/dµ = −Bee/BeG and

Be(µ, Ĝ(µ)) = 0, obtaining the SOC

BeeF (Ĝ(µ))

(
1− φg

f(Ĝ(µ))

F (Ĝ(µ))

)
< 0. (11)

The term to the left of the parentheses in equation (11) is negative; thus, a solution µ∗

to FOC (4) is a local maximum iff φgf(Ĝ(µ∗))/F (Ĝ(µ∗)) < 1. When does this inequality

hold? First, observe that a standard that never binds (Ĝ(µ) ≤ GL) is always a solution

to FOC (4). At this degenerate standard, however, F (Ĝ) = 0, so the SOC clearly fails to

hold. A standard that never binds is, therefore, never optimal (unless φg = 0). Second,

for a lognormal distribution, as well as many other distributions including the normal and

uniform, f(G)/F (G) is decreasing in G (and strictly decreasing within the support of G),

with a limit of zero as G goes to infinity. Thus, as µ decreases and Ĝ increases, the SOC

must eventually become negative and stay negative forever.34 There can consequently be

only one non-degenerate solution to FOC (4)—the solution obtained in section 5.1—and this

solution will be the globally optimal standard.

For other distributions—particularly cases in which f(G) is left-tailed and marginal com-

33In this section, I focus on FOC (4) rather than FOC (5) because the latter was obtained by dividing
through by F (Ĝ), which eliminates the fact that a degenerate standard satisfies the FOC.

34This property continues to hold as Ĝ increases beyond the support of G; i.e., when the standard always
binds (as may be the case, for example, under a uniform distribution for G). Thus, the unique optimum
could be a sometimes-binding or an always-binding standard.
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pliance cost is therefore right-tailed—f(G)/F (G) can be non-monotonic so that the unique-

ness of the non-degenerate solution to FOC (4) is not guaranteed. Because gasoline prices

are right-tailed empirically (figure 2), this issue is likely not relevant for fuel economy reg-

ulation, but it may be important for other settings in which regulators set fixed standards

and the distribution of uncertain marginal abatement cost is right-tailed. In such cases,

solutions to (4) may be local minima or local maxima that are not globally optimal. Fur-

thermore, appendix B.2 shows that a solution to (4) that is not the optimal standard will

actually yield strictly lower expected welfare than the degenerate standard that never binds

iff φg < σc.
35 This result follows from the intuition that an “interior” standard generates

welfare losses that increase with the conditional variance of gasoline prices, while the losses

from a degenerate standard increase with the size of the unpriced externality, φg.

6 Uncertainty and attribute-based regulation

A fixed fuel economy standard, even if set optimally per section 5, will be too stringent

relative to the first-best when the realized gasoline price is low and will be too lax (and may

not bind) when the gasoline price is high. This section explores whether the consequent

welfare loss can be mitigated by implementing an attribute-based regulation (ABR) that

allows vehicle choices to flexibly respond to gasoline price shocks.

Under an affine ABR, the fuel economy standard is given by a function µ(a) = µ0 + γa.

Before formally deriving the optimal standard—which involves optimal values for µ0 and

the slope parameter γ—it is useful to build intuition for agents’ vehicle choices under ABR.

Figure 5 depicts choices of a and e both without (γ = 0) and with (γ > 0) attribute-basing.

In both panels of the figure, the steep dashed line depicts vehicle choices in the absence of

regulation, when a higher (lower) gasoline price G decreases (increases) the choices of both

35Appendix B.2 shows that this possibility extends to cases in which a standard satisfying (2) always
binds. Such a standard will always be a local optimum (since the SOC for an always-binding standard is
simply equal to Bee, which is strictly negative) but will nonetheless be inferior to the degenerate standard
iff φg < σ, where σ is the unconditional standard deviation of gasoline prices (in levels).
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Figure 5: Attribute-based fuel economy regulation
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Note: e denotes fuel consumption per mile, and a denotes a vehicle attribute (e.g., footprint). When

unconstrained, agents’ choices lie on the dashed upward-sloping line, where a lower realized gasoline price G

leads to higher choices of e and a. The fuel economy standard µ(a) = µ0 + γa binds only for gasoline prices

less than Ĝ(µ0, γ). See text for details.

a and e and therefore shifts the location on the line. The slope of this line equals −Baa/Bea.

A first-best regulatory instrument such as a gasoline tax or feebate shifts agents’ vehicle

choices along this line towards lower values of a and e, for any given realization of G.

Panel (a) of figure 5 imposes a “flat” non-attribute-based standard of µ0 = µ∗ that binds

whenever G is less than Ĝ(µ∗) and is optimal conditional on γ = 0, following the discussion

in section 5. When the standard binds, the agents’ choice of a always equals a∗ as shown

in the figure, since the optimal a for the agents, conditional on the choice of e, does not

depend on the realized gasoline price G.36 Equivalently, whenever G ≤ Ĝ(µ∗), the level set

of agents’ private welfare B(e, a,G) that corresponds to the private optimum, subject to the

standard, always has a point of tangency at a∗.

Panel (b) of figure 5 sets γ > 0 so that the regulation is attribute-based. The standard is

rotated so that the gasoline price Ĝ(µ0, γ) at which the standard binds is the same as that

from panel (a), and therefore the “pivot point” (a∗, µ∗) is the same as (a∗, µ∗) from panel

36This result follows from the assumption that BaG = 0.
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(a). Now, as the gasoline price decreases below Ĝ(µ0, γ), agents’ choices (corresponding to

the point of tangency of the level set) move along the standard to progressively higher levels

of a and e.37 It is in this way that ABR creates flexibility with which vehicle choices can

respond to gasoline price shocks. The welfare impact of this flexibility is second-order in γ,

since the sensitivity of e to the gasoline price G is second-order in γ in the neighborhood of

γ = 0.38

Panel (b) also illustrates that ABR distorts the choice of a, conditional on e, away from

its optimum (which lies on the dashed line of unconstrained choices) whenever the standard

is binding. This distortion generates a welfare loss, per Ito and Sallee (forthcoming), that

is second-order in γ in the neighborhood of γ = 0 (since the welfare loss is a standard

Harberger triangle).39 Panel (b) also shows that, given the rotation of the standard about

the point (a∗, µ∗), ABR increases the choice of e, relative to the case when γ = 0, whenever

the standard binds.

I now derive the optimal µ0 and γ. The regulator’s problem is given by:

max
µ0,γ

∫ Ĝ(µ0,γ)

GL

(B(e(µ0, γ, G), a(µ0, γ, G), G)− φe(µ0, γ, G)) f(G)dG

+

∫ GU

Ĝ(µ0,γ)

(B(e(G), a(G), G)− φe(G)) f(G)dG (12)

The first order conditions are then given by (13) and (14) below, where the notation

37I assume that private agents’ SOC when faced with a binding attribute-based standard, Beeγ
2+2Beaγ+

Baa < 0, holds, so that vehicle choices lie on an interior optimum.
38de/dG, which drives the flexibility benefit, is a function of the product of the slope γ with the magnitude

of the distortion in a away from the pivot point attribute a∗. Both of these effects are first-order in γ as γ
increases away from zero, so de/dG is therefore second-order in γ in the neighborhood of γ = 0.

39If the attribute a itself drives an externality, then the welfare effects of changing γ will be first-order at
γ = 0, as discussed in Ito and Sallee (forthcoming). If increasing vehicle size and weight generates external
benefits, then optimal ABR will involve γ > 0 rather than γ = 0 as derived below. Alternatively, if vehicle
size and weight drive external harm, such as the accident damages found in Jacobsen (2013) and Anderson
and Auffhammer (2014), then optimal ABR should actually discourage larger vehicles by setting γ < 0.
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suppresses the dependence of Be, Ba, de/dµ0, de/dγ, da/dµ0, and da/dγ on µ0, γ, and G:

FOCµ0 :

∫ Ĝ(µ0,γ)

GL

(
Be

de

dµ0

+Ba
da

dµ0

− φ de
dµ0

)
f(G)dG = 0 (13)

FOCγ :

∫ Ĝ(µ0,γ)

GL

(
Be
de

dγ
+Ba

da

dγ
− φde

dγ

)
f(G)dG = 0 (14)

Addressing first FOCµ0 , appendix B.3 shows that equation (13) simplifies to:

BeG(Beaγ +Baa)

Beeγ2 + 2Beaγ +Baa

∫ Ĝ(µ0,γ)

GL

(
φg − (Ĝ(µ0, γ)−G)

)
f(G)dG = 0 (15)

Equation (15) is similar to FOC (7) for the level of the fuel economy standard under

no attribute-basing, except that (15) is pre-multiplied by a term that is constant given γ.

Intuitively, when γ = 0 this first term simply equals BeG, so that equation (7) is a special

case of equation (15).40 Equation (15) therefore implies that, conditional on γ, µ0 should

be set so that the price Ĝ at which the standard binds equals Ĝ(µ∗, 0), the same price as

for the optimal flat standard. In terms of figure 5, this result implies that the optimal pivot

point (a∗, µ∗) for an attribute-based standard is invariant to the slope γ of the standard.

Thus, as shown in figure 5, when γ increases, the expected fuel use e rises, so that the overall

stringency of the standard effectively falls.

Why is the pivot point invariant to γ? The intuition flows from the fact that, when γ > 0,

the distortion to the attribute a increases with the stringency of the standard.41 Thus, as

γ increases, the permitted fuel consumption per mile under the optimal standard must rise

in order to mitigate the distortion to a. This outcome is accomplished by holding fixed the

optimal pivot point (a∗, µ∗).

40Recall that equation (7) was derived by dividing the FOC through by −BeGF (Ĝ(µ)), so the two FOCs
are identical when γ = 0.

41To see the intuition, observe in figure 5(b) that reducing µ0 shifts the choice of a away from the dashed
line denoting agents’ unconstrained (and optimal) attribute choices, conditional on e. Formally, the effect
of changing µ0 on the distortion to a is given by da/dµ0 − (−Bea/Baa)(1 + γda/dµ0). Applying results
from appendix B.3, this expression reduces to γ(B2

ea − BaaBee)/(Baa(Beeγ
2 + 2Beaγ + Baa)), which must

be strictly negative (assuming the SOCs for the private agents’ unconstrained and constrained problems are
satisfied).
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The fixed pivot point also has implications for the optimal level of γ. One way to view the

tradeoff in setting γ is that ABR causes a distortion in a, per Ito and Sallee (forthcoming),

but also creates flexibility for vehicle choices to respond to gasoline price shocks. Also

important, however, is the fact that ABR increases fuel use, relative to a flat standard, for

any fuel price at which the standard binds. ABR therefore does not, as one might have

initially expected, cause fuel use to decrease when the gasoline price is relatively high and

increase when the gasoline price is relatively low.

This intuition leads to this section’s main result that the optimal fuel economy standard

has γ = 0 and is therefore not attribute-based. Formally, appendix B.3 shows that the FOC

for γ given by equation (14) simplifies to equation (16) below, where σc is the standard

deviation of gasoline prices conditional on the standard binding, and it is assumed that the

pivot point is set at (a∗, µ∗) so that equation (15) is satisfied:

γF (Ĝ)(Baa +Beaγ)

(Beeγ2 + 2Beaγ +Baa)2
B2
eG(φ2

g − σ2
c ) = 0. (16)

There are only two solutions to equation (16): γ = 0 and γ = −Baa/Bea. The former cor-

responds to a non-attribute-based standard, while the latter is an attribute-based standard

such that the slope of the standard is the same as the rate at which unconstrained private

agents trade off a and e. Following figure 5, if the pivot point is fixed at (a∗, µ∗), setting

γ = −Baa/Bea allows agents to choose the same vehicles that they would have chosen in the

absence of regulation. Optimal ABR therefore involves one of two possible corner solutions

for γ: either the standard is flat (γ = 0), or it is so heavily attribute-based (γ = −Baa/Bea)

that the standard is non-binding for any realization of G. These corner outcomes result from

the fact that the welfare impacts of both the flexibility benefits and attribute distortions of

ABR are second rather than first-order.

At γ = 0, the SOC for γ reduces to B−1aa F (Ĝ)B2
eG(φ2

g − σ2
c ) < 0. Recall from section

5.2 that if the level of the standard is set so that it not only satisfies FOC (8) (equivalent
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to FOC (15) when γ = 0) but is also globally optimal conditional on γ = 0, we must have

φg ≥ σc. Since Baa < 0, it then follows that if µ0 is globally optimal within the set of flat

standards, the SOC for γ is satisfied at γ = 0.42 The globally optimal fixed fuel economy

standard therefore has γ = 0 and is not attribute-based. Thus, the central insight of Ito

and Sallee (forthcoming) that ABR reduces welfare extends to the case when uncertainty

over future gasoline prices drives uncertainty over future marginal compliance costs. The

intuition for this result stems from the fact that the flexibility benefit of ABR is countered

both by the distortion to the attribute and by the increase in expected fuel consumption

when the standard binds.

Finally, the γ = −Baa/Bea solution to FOC (16) only satisfies the SOC when φg ≤ σc,
43

which per section 5.2 can only happen when µ0 is set so stringently that a flat standard at

µ0 yields lower welfare than no standard at all. In this case, setting γ = −Baa/Bea, which

is equivalent to a non-binding standard at any gasoline price, will intuitively dominate the

flat γ = 0 standard. Thus, ABR can be valuable when it is used to mitigate the effects of

setting a standard with a level µ0 that is far too stringent. If the level of the standard is set

optimally, however, the optimal fuel economy standard is flat.

42FOC (16) and the SOC for γ at γ = 0 (given by B−1aa F (Ĝ)B2
eG(φ2g − σ2

c ) < 0) both assume that FOC
(15) for µ0 is satisfied. Thus, if SOC (11) for µ0, conditional on γ = 0, is satisfied, then satisfaction of the
SOC for γ at γ = 0 is sufficient for a local optimum at (µ0, 0) (since the SOC for γ already accounts for the
cross-terms in the Hessian). Moreover, since satisfaction of the SOC for γ at γ = 0 implies that the SOC
is violated at γ = −Baa/Bea, a γ = 0 local optimum is globally optimal if the choice of µ0, conditional on
γ = 0, is globally optimal.

43At γ = −Baa/Bea, the SOC is given by −BaaF (Ĝ)Z−2B2
eG(φ2g − σ2

c ) < 0, where Z is the denominator
in equation (16) evaluated at γ = −Baa/Bea.
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7 Additional factors affecting fuel economy feebates or

standards under uncertainty

7.1 Covariance between gasoline prices and marginal damage

The results in sections 4 through 6 assume that marginal damage φg is locally constant and

unaffected by changes to the gasoline price G. However, if gasoline price changes are driven

by shocks to the global economy or global crude oil supply, the path of global CO2 emissions

may shift. This shift will then cause φg to change to the extent that the global marginal

damage curve for CO2 is upward-sloping. If changes in φg and G are positively (negatively)

correlated, then the first-best price-indexed fuel economy standard should be more (less)

responsive to gasoline price shocks than the price-indexed standard discussed in section 4.

For instance, if a decrease in G is associated with a decrease in φg, the optimal feebate must

decrease when G decreases, and therefore the optimal fuel use per mile increases by more

than it would have were φg constant.

The sign of the correlation between shocks to φg and G is not obvious a priori, since it

depends on whether global demand shocks or supply shocks are dominant in determining

crude oil price movements. For instance, a persistent slowdown in the global economy will

decrease the path of global CO2 emissions and therefore decrease marginal damage φg. The

reduction in economic output will also reduce demand for crude oil, thereby reducing the

price of gasoline. φg and G are therefore positively correlated in this scenario. Shocks to

global crude oil supply, however, will drive a negative correlation.

There exists considerable work in macroeconomics that attempts to disentangle supply

and demand shocks in the global crude oil market. See Hamilton (2013) and Kilian (2014)

for recent surveys and discussion; it is clear from this literature that the extent to which oil

price shocks are supply versus demand-driven has varied over time. Baumeister and Kilian

(2016) attribute the recent 2014–2015 oil and gasoline price decrease primarily to demand

shocks, though positive shocks to oil production played a role as well.
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7.2 Banking and borrowing of fuel economy credits

The U.S. fuel economy standards established in 2012 allow manufacturers to bank unused

fuel economy credits or borrow credits against future years. This banking and borrowing is a

flexibility that in principle can help firms smooth shocks to marginal compliance cost that are

driven by gasoline prices. Application of results from Pizer and Prest (2016)—which studies

binding dynamic quantity standards under abatement cost uncertainty—implies that even

if a fuel economy standard is fixed for many years, the first-best can be achieved if banking

and borrowing is permitted (with specific trading ratios) over time horizons that exceed the

time elapsed between the regulator’s updates to the standard.44

In practice, however, banking and borrowing are unlikely to help vehicle manufacturers

respond to gasoline price shocks under the U.S. fuel economy standards. First, credits may

only be banked for up to five years, and they may be borrowed only to cover deficits from

no more than three years in the past. These time periods are substantially shorter than

the time between policy updates (the standards set in 2012 are locked-in through at least

2021). Second, gasoline price shocks are typically persistent, as shown in section 2.2, so that

a negative shock this year does not imply that the price will rebound next year. Given this

persistence, banking and borrowing cannot help firms smooth out compliance cost shocks

driven by gasoline price volatility. This point is illustrated in appendix D using a simple

two-period model that examines how the incentive to bank or borrow emissions credits varies

with the persistence of gasoline price shocks.

7.3 Consumer valuation of fuel economy

What if consumers do not fully value future fuel costs when making a vehicle purchase?

If policy-makers have the objective of correcting for not just external damage φ but also

44Pizer and Prest (2016) shows that a “quantity” policy with banking and borrowing can actually improve
welfare over a “price” policy, even if marginal damage is locally constant, if: (1) there are not just shocks
to compliance costs but also to marginal damage, (2) these shocks are observable to firms, and (3) the price
policy cannot be applied retroactively.
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consumer undervaluation, then the optimal tax on fuel consumption per mile must account

for both effects. This paper’s model can be extended to accommodate standard models of

undervaluation (such as Allcott and Wozny (2014); Busse, Knittel, and Zettelmeyer (2013);

and Sallee, West, and Fan (2016)) by replacing the BeG term in the private benefit function

with λBeG, where λ ∈ [0, 1], with λ = 1 connoting full valuation. The optimal tax on

fuel consumption per mile is then equal to φ + (1 − λ)BeGG. This tax increases with the

price of gasoline whenever λ < 1, since the magnitude of undervaluation of future fuel costs

increases with the fuel price.45 To mimic this tax with a gasoline price-indexed fuel economy

standard, the standard must be more responsive to gasoline price shocks the greater is

consumer undervaluation. Thus, when consumers undervalue fuel economy in this way, the

welfare benefit (relative to a fixed standard) of optimally indexing the fuel economy standard

to gasoline prices is enhanced relative to the full valuation baseline case presented in section

4.

7.4 Technology, investment, and adjustment costs

Compliance with fuel economy standards requires not just shifting of the fleet-wide sales mix

but also design changes and, ultimately, technology innovation. Indeed, the “ramping up”

of U.S. fuel economy standards shown in figure 1 was designed with technological progress

in mind. Compliance costs in practice are therefore dynamic rather than static as modeled

here. How might dynamic compliance costs affect the economics of a fixed fuel economy

standard versus a feebate?

Under perfect competition, a feebate policy will still attain the first-best with dynamic

compliance costs, while the fixed standard will not. The intuition is given in Williams (2012):

while the optimal quantity of emissions abated may phase in over time in the presence of

adjustment costs or technology investment, a Pigouvian tax that causes private actors to

equate marginal compliance cost to marginal damage at all times is still optimal. Dynamic

45In an alternative model in which fuel costs become more salient to consumers when the gasoline price is
high, so that λ is an increasing function of G, the optimal tax may instead be constant or decreasing in G.
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compliance costs do, however, complicate the equivalence between a feebate policy and a

gasoline price-indexed fuel economy standard. In the static model presented in the paper,

the price-indexed standard responds immediately to fuel price shocks. In the presence of

dynamic compliance costs, however, the optimal price-indexed standard must respond grad-

ually, mimicking how firms would respond to fuel price shocks under the feebate.

When firms that invest in fuel efficiency technology compete imperfectly, the choice

between a price or quantity policy may affect the extent to which the level of innovation

approaches the social optimum. Montero (2011) and Scotchmer (2011), for instance, develop

models of innovation under price or quantity regulation when innovators have the ability to

extract monopoly rents by licensing the technology they develop. The extent to which

outcomes from a price or quantity policy deviate from the first-best depends on the size of

the innovation, the elasticity of demand for abatement, and the ability of the regulator to

commit to its policy.

8 Conclusion

Fuel economy policy in the United States is beset by the difficult problem that standards

enacted remain in place for long time horizons over which the price of gasoline can vary

substantially. Gasoline price swings, such as the fall in prices experienced between 2014 and

2015, affect the marginal cost of compliance with a fixed fuel economy standard because con-

sumers’ valuation of fuel economy co-varies with the price of gasoline. Following Weitzman

(1974), the first-best welfare outcome can be achieved by allowing the standard, in miles

per gallon, to rise and fall with the price of gasoline (and possibly also with shocks to fuel

economy technology, to the extent it can be objectively measured), mimicking what would

happen under a feebate. In practice, however, U.S. fuel economy standards are updated only

infrequently. The standards set in 2012 are locked in place until 2021, and an ongoing EPA

review is expected to finalize standards for 2022–2025. During these long regulatory com-
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mitment periods, inevitable swings in the price of gasoline will open up a gap between the

regulation’s marginal compliance cost and its marginal benefit, reducing expected welfare

relative to the first-best.

When fuel economy standards are periodically revised, these revisions can take into ac-

count fuel prices at the time of the revision. But what then is the optimal standard to

set? The usual rule when committing to a fixed pollution control standard is to equate

the expected marginal cost of abatement at the standard to marginal external harm. This

rule ignores, however, the possibility that fuel price uncertainty (and therefore marginal cost

uncertainty) is sufficiently large, and the policy horizon sufficiently long, that the standard

set will not actually bind. I show that given historic gasoline price volatility and estimates of

marginal damage from the literature, this possibility is sufficiently likely that an optimally-

set fuel economy standard is substantially relaxed relative to that prescribed by the usual

rule. The optimal fixed standard may in fact be so lax that it is non-binding at the expected

gasoline price, since doing so substantially mitigates the welfare losses associated with low

gasoline price realizations. Furthermore, I show that while an attribute-based standard does

introduce some flexibility by which consumers can vary their vehicle choice with gasoline

prices, the distortions caused to the attribute and to the expected level of fuel consumption

are so costly that attribute-basing reduces expected welfare.

While this paper is focused on fuel economy regulation, the concepts and conclusions

presented are likely to be relevant for other pollution control settings in which marginal

abatement costs are uncertain and marginal damage is locally constant. For instance, the

CO2 standards under the Clean Power Plan relied in part on anticipated reductions in

emissions from switching from coal-fired to gas-fired electricity generation. However, the

cost of fuel switching, and therefore the cost of abatement, depends on the relative prices

of coal and natural gas. If natural gas becomes very cheap relative to coal, the regulation

may not bind, much like fuel economy regulations may not bind if the price of gasoline

rises. Because the price of natural gas has a volatility even larger than that of gasoline, the
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probability of such an outcome is far from trivial, so that the optimal standard will deviate

substantially from the usual Weitzman (1974) calculation.46 As another example, Borenstein

et al. (2016) estimates substantial uncertainty in business-as-usual emissions, and therefore

marginal abatement costs, for California’s 2013–2020 greenhouse gas cap-and-trade market.

In that market, Borenstein et al. (2016) demonstrates that the regulation that is likely to

bind is not the quantity standard itself but rather the floor or ceiling on emission permit

prices. A potential extension of the results presented here could consider optimal fixed

standards in the presence of a ceiling or a non-zero floor on the price of emission permits

and therefore marginal abatement costs.

46Using five-year differences on EIA natural gas prices for the electric power sector (obtained from
https://www.eia.gov/dnav/ng/hist/n3045us3m.htm on 19 January, 2018), natural gas price volatility
is 64.8%. Given a January, 2016 natural gas price of $3.17 per million Btu (mmBtu), the stan-
dard deviation of natural gas prices five years in the future is therefore $2.05/mmBtu. This volatil-
ity is large relative to the carbon externality in terms of $ per mmBtu of natural gas. For a so-
cial cost of carbon of $38/mton and a January, 2016 electric power sector average coal price of
$2.11/mmBtu (coal price data in $ per short ton obtained from EIA’s Annual Coal Report (re-
leased November 2017), table 34, at https://www.eia.gov/coal/annual/pdf/table34.pdf, and coal heat
content data (mmBtu per short ton) obtained from EIA’s Monthly Energy Review, table A5, at
https://www.eia.gov/totalenergy/data/monthly/pdf/sec13 5.pdf), calculations from Cullen and Mansur
(2017) indicate that a natural gas price decrease of $1.27/mmBtu would have an equivalent effect on power
sector emissions as would imposition of a carbon tax at the SCC (I use equations (2) and (3), and footnote
6, from Cullen and Mansur (2017) to find the natural gas price decrease that would have the same impact on
the coal-to-gas cost ratio as would the carbon tax, locally to the cost ratio at the fuels’ social cost). Because
this $1.27/mmBtu externality is less than the natural gas price volatility (in levels) of $2.05/mmBtu, there
is a significant probability that optimally-set electric power CO2 regulation may not bind.
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Appendix

A Representative consumer model

Consider a unit mass of consumer types i, each of whom purchases a vehicle with fuel use per
mile ei and attribute ai, yielding private benefit Bi(ei, ai, G) = U i(ei, ai, G) − C(ei, ai, G).
This section proves that a sufficient statistic for the aggregate private welfare effects of
fuel economy policies is the private benefit B(e, a,G) obtained from the average vehicle
purchased, where e is the average of the ei, a is the average of the ai, and the first derivatives
of B equal the average of the Bi

e and Bi
a.

I begin by showing that all consumer types make identical changes to their fuel use and
attribute choices when there is a change to either G or a tax τ on fuel use per mile. Given
G and τ , consumer i’s choice of ei and ai is given by the solution to the system of FOCs

Bi
e(ei, ai, G) = τ (17)

Bi
a(ei, ai, G) = 0. (18)

Application of the implicit function theorem yields:

dei
dG

=
−BaaBeG

BeeBaa −B2
ea

< 0;
dei
dτ

=
Baa

BeeBaa −B2
ea

< 0 (19)

dai
dG

=
BeaBeG

BeeBaa −B2
ea

≤ 0;
dai
dτ

=
−Bea

BeeBaa −B2
ea

≤ 0, (20)

(21)

where it is assumed that the SOC BeeBaa − B2
ea > 0 holds so that the private problem

has an interior optimum. Under the second order Taylor expansion assumptions of the text,
each of the derivatives above is a constant scalar that is identical across all types i. Thus,
changes to G or to the fuel economy tax τ affect all types identically. Moreover, changes
to τ , given G, are one-to-one with changes in e and a, the average fuel use and attribute.
Thus, if a fuel economy standard (with compliance credit trading) is used in lieu of a tax,
shifts in the standard are isomorphic to shifts in the implied tax τ . Thus, it is sufficient to
show that B(e, a,G) is a sufficient statistic for welfare under a tax policy; I do not need to
explicitly model a fixed fuel economy standard.

Using the second order Taylor expansion, let Bi
e and Bi

a be written as:

Bi
e(ei, ai, G) = Bi

e0 +Bea(ai − a∗) +Bee(ei − e∗) +BeG(G− Ḡ) (22)

Bi
a(ei, ai, G) = Bi

a0 +Bea(ei − e∗) +Baa(ai − a∗), (23)

where e∗ and a∗ are the socially optimal fuel use and attribute, when the gasoline price
equals its expected price Ḡ, for the representative consumer, who has marginal utility inter-
cepts given by Be0 =

∫
i
Bi
e0di and Ba0 =

∫
i
Bi
a0di.
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Aggregate private welfare is then given by:∫
i

Bi(ei, ai, G)di =

∫
i

Bi
e0(ei − e∗)di+

∫
i

Bi
a0(ai − a∗)di+

1

2
Bee

∫
i

(ei − e∗)2di

+
1

2
Baa

∫
i

(ai − a∗)2di+Bea

∫
i

(ei − e∗)(ai − a∗)di

+BeG

∫
i

(ei − e∗)(G− Ḡ)di. (24)

Define e ≡
∫
i
eidi and a ≡

∫
i
aidi. Replace the (ei − e∗) terms in equation (24) with

(ei − e + e− e∗), and do likewise with the (ai − a∗) terms. After removing terms for which
the expectation is zero, and after grouping related terms together, we obtain:∫

i

Bi(ei, ai, G)di = [Be0(e− e∗) +Ba0(a− a∗) +
1

2
Bee(e− e∗)2 +

1

2
Baa(a− a∗)2

+Bea(e− e∗)(a− a∗) +BeG(e− e∗)(G− Ḡ)]

+ [

∫
i

Bi
e0(ei − e)di+

∫
i

Bi
a0(ai − a)di+

1

2
Bee

∫
i

(ei − e)2di

+
1

2
Baa

∫
i

(ai − a)2di+Bea

∫
i

(ei − e)(ai − a)di] (25)

The first bracketed term in equation (25) is the second order Taylor expansion ofB(e, a,G).
The second bracketed term is invariant to G or to fuel economy policy, since ei−e and ai−a
are constants for each i. Thus, B(e, a,G) is a sufficient statistic for the private welfare effects
of fuel economy policy.

B Proofs and derivations

B.1 Expected welfare loss from an optimal standard

This section derives equation (9) from the main text, which gives the expected welfare loss,
relative to the first-best, for an optimal flat fuel economy standard µ∗ that may not bind.

Define Ĝ implicitly by Be(µ
∗, Ĝ) = 0. As in the main text, define µ̃ implicitly by

E[Be(µ̃, G)] = φ. Per the second order Taylor expansion, marginal utility is given by

Be(e,G) = BeG(G− Ĝ) +Bee(e− µ∗). (26)

When the standard does not bind, rearranging (26) yields the function e(G) that gives
agents’ fuel economy choice as a function of G:

e(G) = µ∗ − BeG

Bee

(G− Ĝ). (27)

If the first-best tax τ = φ is imposed instead of the fixed standard, agents’ choices are
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instead given by the function ẽ(G):

ẽ(G) = µ∗ +
φ

Bee

− BeG

Bee

(G− Ĝ). (28)

Using the Taylor expansion B(e,G) = BeG(e− µ∗)(G− Ĝ) + Bee

2
(e− µ∗)2, we may then

obtain an expression for B(e(G), G):

B(e(G), G) = BeG
−BeG

Bee

(G− Ĝ)2 +
Bee

2

(
−BeG

Bee

)2

(G− Ĝ)2

=
−B2

eG

2Bee

(G− Ĝ)2, (29)

and an expression for B(ẽ(G), G):

B(ẽ(G), G) = BeG

(
φ

Bee

− BeG

Bee

(G− Ĝ)

)
(G− Ĝ) +

Bee

2

(
φ

Bee

− BeG

Bee

(G− Ĝ)

)2

=
−B2

eG

2Bee

(G− Ĝ)2 +
φ2

2Bee

. (30)

Define ∆ to be the expected welfare loss under µ∗ relative to the first best. ∆ is given
by:

∆ ≡
∫ Ĝ

GL

[B(ẽ(G), G)− φẽ(G)−B(µ∗, G) + φµ∗] f(G)dG

+

∫ GU

Ĝ

[B(ẽ(G), G)− φẽ(G)−B(e(G), G) + φe(G)] f(G)dG. (31)

Let ∆1 denote the first integral in (31). Noting that B(µ∗, G) = 0, substituting using
(28) and(30), and cancelling terms, we obtain

∆1 =
−1

2Bee

∫ Ĝ

GL

[
B2
eG(G− Ĝ)2 − 2φBeG(G− Ĝ) + φ2

]
f(G)dG. (32)

Next, note that if we multiply FOC (7) by BeG, we obtain∫ Ĝ

GL

(
BeG(G− Ĝ)− φ

)
f(G)dG = 0. (33)

Substituting (33) into (32) yields:

∆1 =
−1

2Bee

∫ Ĝ

GL

[
B2
eG(G− Ĝ)2 − φ2

]
f(G)dG. (34)

Define Ġ ≡ 1

F (Ĝ)

∫ Ĝ
GL
Gf(G)dG (i.e., Ġ is the expected value of G conditional on the
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standard binding). Then define σ2
c ≡ 1

F (Ĝ)

∫ Ĝ
GL

(G− Ġ)2f(G)dG. We then have:

B2
eG

∫ Ĝ

GL

(G− Ĝ)2f(G)dG = B2
eG

∫ Ĝ

GL

(G− Ġ+ Ġ− Ĝ)2f(G)dG

= F (Ĝ)B2
eG(σ2

c + (Ġ− Ĝ)2)

= F (Ĝ)(B2
eGσ

2
c + φ2), (35)

where the last line makes use of equation (33) and the definition of Ġ. Substituting (35)
into (34) yields:

∆1 =
−F (Ĝ)B2

eGσ
2
c

2Bee

. (36)

Returning to equation (31), let ∆2 denote the second integral. Making substitutions
using equations (27)-(30), we obtain:

∆2 =

∫ GU

Ĝ

−φ2

2Bee

f(G)dG =
−φ2(1− F (Ĝ))

2Bee

. (37)

Combining terms yields expression (9) from the main text, which simplifies to the stan-

dard Weitzman (1974) formula, ∆ =
−σ2B2

eG

2Bee
, when the standard always binds:

∆ = − B
2
eG

2Bee

(
F (Ĝ(µ∗))σ2

c + (1− F (Ĝ(µ∗)))φ2
g

)
.

B.2 Welfare from a fixed standard versus a degenerate standard

This section derives the expected welfare benefit δ of a standard µ∗ that satisfies FOC (4)
relative to imposing a degenerate standard that never binds. Reusing notation from appendix
B.1, δ is then defined by:

δ ≡
∫ Ĝ

GL

[B(µ∗, G)− φµ∗ −B(e(G), G) + φe(G)] f(G)dG. (38)

Applying equations (27) and (29), we can simplify expression (38) to:

δ ≡
∫ Ĝ

GL

[
−BeG

Bee

(G− Ĝ)φ+
B2
eG

2Bee

(G− Ĝ)2
]
f(G)dG. (39)

Next, apply equations (33) and (35) to obtain

δ =
F (Ĝ)

2Bee

(
B2
eGσ

2
c + φ2 − 2φ2

)
=
−F (Ĝ)B2

eG

2Bee

(φ2
g − σ2

c ). (40)
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Thus, a standard µ∗ that satisfies FOC (4) improves welfare relative to a degenerate
standard iff φ2

g − σ2
c ≥ 0. This result can be extended to the case in which µ∗ always binds

(so that σ2
c = σ2) by defining f(G) = 0 between GU and Ĝ(µ∗).

B.3 Optimal attribute-based standard

This section derives expressions (15) and (16)—the FOC for µ0 and the FOC for γ (condi-
tional on satisfaction of (15)) from the main text. To begin, it is useful to first write down
the private agents’ vehicle choice problem subject to a binding attribute-based standard and
derive how the choices of a and e vary with µ0, γ, and G.

When e is constrained to lie on e = µ0 + γa, the agents’ problem can be written as:

max
a
B(µ0 + γa, a,G) (41)

The agents’ FOC and SOC, using the notation e(a) = µ0 + γa are then:

Be(e(a), a, G)γ +Ba(e(a), a, G) = 0 (42)

Beeγ
2 + 2Beaγ +Baa < 0 (43)

The solution to FOC (42), combined with the constraint e = µ0 + γa, yields agents’
choices of e and a as functions e(µ0, γ, G) and a(µ0, γ, G). The implicit function theorem
can then be used to establish the following useful derivatives when the standard binds (where
the notation suppresses the dependence of Ba, Be, da/dG, de/dG, da/dµ0, de/dµ0, da/dγ,
and de/dγ on µ0, γ, and G):

da

dG
=

−BeGγ

Beeγ2 + 2Beaγ +Baa

≤ 0 (44)

de

dG
= γ

da

dG
=

−BeGγ
2

Beeγ2 + 2Beaγ +Baa

≤ 0 (45)

da

dµ0

=
−(Beeγ +Bea)

Beeγ2 + 2Beaγ +Baa

(46)

de

dµ0

= 1 + γ
da

dµ0

=
Beaγ +Baa

Beeγ2 + 2Beaγ +Baa

(47)

da

dγ
=
−(Be(e(a), a, G) +Beeaγ +Beaa)

Beeγ2 + 2Beaγ +Baa

(48)

de

dγ
= a+ γ

da

dγ
=
Beaaγ +Baaa−Be(e(a), a, G)γ

Beeγ2 + 2Beaγ +Baa

(49)

We next develop simple expressions for Be and Ba while constrained. Let (â, ê) denote
the pivot point for the standard and Ĝ denote the gasoline price at which the standard
just binds (ê, â, and Ĝ are all functions of µ0 and γ). Because Ba(ê, â, G) = 0 (recall that
BaG = 0), we may write the Taylor expansion for Ba as:

Ba(e, a,G) = Bea(e− ê) +Baa(a− â). (50)
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Along the standard, e − ê and a − â are linear functions of G − Ĝ, per the derivatives
given by equations (45) and (44), respectively. Substituting, we obtain:

Ba(e, a,G) =
−γ(Beaγ +Baa)

Beeγ2 + 2Beaγ +Baa

BeG(G− Ĝ). (51)

We can then use FOC (42) to obtain Be(e, a,G):

Be(e, a,G) =
Beaγ +Baa

Beeγ2 + 2Beaγ +Baa

BeG(G− Ĝ). (52)

We are now in position to begin working with the FOC for µ0 given by equation (13)
in the text. To simplify notation, let S = Beeγ

2 + 2Beaγ + Baa. Sequentially applying the
agents’ FOC (42) and then expressions (46), (47), and (52), we obtain:

FOCµ0 :

∫ Ĝ

GL

(
Be(

de

dµ0

− γ da
dµ0

)− φ de
dµ0

)
f(G)dG = 0

=
1

S

∫ Ĝ

GL

(
(Beaγ +Baa)BeG(G− Ĝ)S

S
− φ(Beaγ +Baa)

)
f(G)dG = 0

=
Beaγ +Baa

S

∫ Ĝ

GL

(BeG(G− Ĝ)− φ)f(G)dG = 0 (53)

=
BeG(Beaγ +Baa)

S

∫ Ĝ

GL

(φg − (Ĝ−G))f(G)dG = 0. (54)

Equation (54) matches equation (15) from the text.
We may next turn to the FOC for γ given by equation (14). Sequentially applying the

agents’ FOC (42) and then expressions (48), (49), and (52), we obtain:

FOCγ :

∫ Ĝ

GL

(
Be(

de

dγ
− γ da

dγ
)− φde

dγ

)
f(G)dG = 0

=
1

S

∫ Ĝ

GL

(
(Beaγ +Baa)BeG(G− Ĝ)Sa

S
− φ(Beaaγ +Baaa−Beγ)

)
f(G)dG = 0

=
Beaγ +Baa

S

∫ Ĝ

GL

(
BeG(G− Ĝ)a− φa+

φBeG(G− Ĝ)γ

S

)
f(G)d(G) = 0

=
Beaγ +Baa

S2

∫ Ĝ

GL

((BeG(G− Ĝ)a− φa)S + φγBeG(G− Ĝ))f(G)dG = 0 (55)

Next, we can use the FOC for µ0, equation (54), to simplify further:

=
Beaγ +Baa

S2

∫ Ĝ

GL

((a− â)S(BeG(G− Ĝ)− φ) + φ2γ)f(G)dG = 0 (56)
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Next apply equation (44) and then (54) again to obtain:

=
Beaγ +Baa

S2

∫ Ĝ

GL

(
−BeGγ(G− Ĝ)(BeG(G− Ĝ)− φ) + φ2γ

)
f(G)dG = 0

=
γ(Beaγ +Baa)

S2

∫ Ĝ

GL

(
−B2

eG(G− Ĝ)2 + 2φ2
)
f(G)dG = 0 (57)

Finally, apply equation (35) to obtain:

FOCγ :
γF (Ĝ)(Beaγ +Baa)

S2
(φ2 −B2

eGσ
2
c ) = 0

=
γF (Ĝ)(Beaγ +Baa)

S2
B2
eG(φ2

g − σ2
c ) = 0 (58)

Equation (58) matches equation (16) from the main text.

C Prices versus quantities with a rebound effect

This appendix shows that the main result from section 4—a feebate delivers greater expected
welfare than a fuel economy standard—holds in the presence of a rebound effect, so long as
the gasoline price elasticity of driving is not too large. In this setting, neither instrument
achieves the first-best (a gasoline tax is required), and under complete information the
feebate and fuel economy standard are equivalent second-best policies. Throughout this
appendix, I abstract away from vehicle attributes other than fuel economy, and I assume
that all consumers are homogenous.47

Allowing a rebound effect requires a substantial modification of the model. Let e and
C(e) denote the vehicle’s fuel use per mile and production cost, as in the main text, and let
G and φg continue to represent that gasoline price and per-gallon externality. Let Q denote
the consumer’s miles driven, and let V (Q) denote the utility from driving, where V ′(Q) > 0,
and V ′′(Q) < 0 and is locally constant. Private indirect utility is then given by:

U(Q, e) = V (Q)− C(e)− eGQ. (59)

Note that as V ′′ → −∞ so that miles driven are perfectly inelastic, the model becomes
equivalent to that in the main text, where Bee = −C ′′ and BeG = −Q. Because the feebate
strictly welfare dominates the fuel economy standard with perfectly inelastic demand for
miles driven (so long as f(G) is non-degenerate), it is straightforward to show that, given
f(G), φg, and C ′′, there must exist some arbitrarily small but non-zero value of −1/V ′′ such
that the feebate continues to dominate the standard. That is, the result in section 4 is robust
to a small rebound effect.

47Allowing for heterogeneity in the intercepts of consumers’ marginal utility functions, similar to appendix
A, will here generate heterogeneity in the responses of miles driven and fuel economy to gasoline price shocks.
Welfare can then no longer be modeled using a representative consumer.
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To make further progress, consider welfare under the fuel economy standard. For sim-
plicity, assume that the standard always binds (allowing for the possibility that the standard
may not bind will further reduce the expected welfare from the standard relative to the
feebate). Given a standard µ, the consumer’s FOCs are given by

V ′(Q)− µG = 0 (60)

−C ′(µ)−GQ− λ = 0, (61)

where λ is the shadow value of the imposed constraint. With e fixed at µ, we have
dQ/dG = µ/V ′′ ≤ 0 and dQ/dµ = G/V ′′ ≤ 0. The optimal standard then solves:

max
µ

∫ GH

GL

(V (Q)− C(µ)− µQ(G+ φg)) f(G)dG. (62)

The FOC is given by:∫ GH

GL

(
V ′(Q)

dQ

dµ
− C ′(µ)− (Q+ µ

dQ

dµ
)(G+ φg)

)
f(G)dG = 0. (63)

Applying equation (60) and dQ/dµ = G/V ′′ then yields that the optimal fuel economy
standard µ∗ satisfies:

−C ′(µ∗) =

∫ GH

GL

Q(G+ φg)f(G)dG+
µ∗φgḠ

V ′′
. (64)

Note that as V ′′ → −∞, equation (64) simplifies to −C ′(µ∗) = Q(Ḡ + φg), consistent
with equation (2) from the main text. Let Q∗ denote miles driven when the fuel economy
standard is µ∗ and the gasoline price is Ḡ; i.e, V ′(Q∗) = µ∗Ḡ.

Expected welfare under the fuel economy standard can then be obtained using the Taylor
expansion for V (Q) and the fact that dQ/dG = µ∗/V ′′. Given the standard µ∗ and a gasoline
price G, we have:

V (Q(µ∗, G)) = V (Q∗) + µ∗Ḡ(Q−Q∗) +
V ′′

2
(Q−Q∗)2

= V (Q∗) +
µ∗2Ḡ

V ′′
(G− Ḡ) +

µ∗2

2V ′′
(G− Ḡ)2

= V (Q∗) +
µ∗2

V ′′

(
Ḡ(G− Ḡ) +

1

2
(G− Ḡ)2

)
. (65)

Expected social welfare E[Wµ] under the optimal standard µ∗ is then:

E[Wµ] = V (Q∗) +
µ∗2

V ′′

∫ GH

GL

(
Ḡ(G− Ḡ) +

1

2
(G− Ḡ)2

)
f(G)dG− C(µ∗)

− µ∗
∫ GH

GL

(G+ φg)(Q
∗ +

µ∗

V ′′
(G− Ḡ))f(G)dG. (66)

A-8



Next consider a vehicle tax of t dollars per gallon per mile. Under this tax, the consumer’s
FOCs are given by:

V ′(Q)− eG = 0 (67)

−C ′(e)−GQ− t = 0. (68)

Application of the implicit function theorem yields the following derivatives:

dQ

dG
=

eC ′′ −GQ
V ′′C ′′ +G2

(69)

de

dG
=
−eG−QV ′′

V ′′C ′′ +G2
(70)

dQ

dt
=

−G
V ′′C ′′ +G2

(71)

de

dt
=

−V ′′

V ′′C ′′ +G2
. (72)

The consumer’s SOC requires that the denominator of each of the above derivatives be
strictly negative. As V ′′ → −∞, the derivatives de/dG and de/dt collapse to −Q/C ′′ and
−1/C ′′, consistent with the main text. Using FOCs (67) and (68), a necessary and sufficient
condition for the derivatives dQ/dG and de/dG to both be negative (consistent with empirical
observations) is that −eC ′′/(C ′(e) + t) > 1 and −QV ′′/V ′(Q) > 1, respectively. In other
words, the response of fuel economy to the marginal cost of fuel economy, holding Q fixed,
must be inelastic, as must be the response of miles driven to the marginal cost of driving,
holding e fixed. I adopt these assumptions on these elasticities for the remainder of the
appendix.

The optimal fuel economy tax solves:

max
t

∫ GH

GL

(V (Q)− C(e)− eQ(G+ φg)) f(G)dG, (73)

where Q and e are both functions of t and G. The FOC is given by:∫ GH

GL

(
V ′(Q)

dQ

dt
− C ′(e)de

dt
− (Q

de

dt
+ e

dQ

dt
)(G+ φg)

)
f(G)dG = 0. (74)

Using the consumer’s FOCs (67) and (68) and the derivatives (71) and (72), we obtain:∫ GH

GL

1

V ′′C ′′ +G2
(eφgG− tV ′′ + φgQV

′′) f(G)dG = 0

↔ t

∫ GH

GL

1

V ′′C ′′ +G2
f(G)dG =

∫ GH

GL

1

V ′′C ′′ +G2

(
φgQ+

eφgG

V ′′

)
f(G)dG. (75)

Note that as V ′′ → −∞, equation (75) simplifies to t = φgQ = φ, consistent with the
main text. More generally, when V ′′ is real valued the level of fuel economy under the optimal
tax and at the average gasoline price Ḡ will differ from the optimal fuel economy standard
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µ∗ given by equation (64), since the response of Q to shocks to G differs between these two
instruments.

The goal of this section is to compare expected welfare under the optimal tax, E[Wt], to
expected welfare under the optimal standard, E[Wµ]. A tractable comparison requires the
use of Taylor expansions for V (Q) and C(e) under the tax locally to µ∗ and Q∗ as defined
by equation (64) and V ′(Q∗) = µ∗Ḡ. Because the difference between µ∗ and e(Ḡ) under
the optimal tax is not tractable owing to the integrals in equation (75), I instead calculate
expected welfare for the tax assuming that the tax is set so that, at Ḡ, the realized fuel
economy is µ∗ and the realized miles driven are Q∗. The difference in expected welfare
between the tax and standard policies that I derive will then be a lower bound on the actual
difference between the optimal tax and the optimal standard.

For tractability, I assume that dQ/dG and de/dG are locally constant; i.e., I approximate
these derivatives at Ḡ. The Taylor expansions for V (Q) and C(e) around Q∗ and µ∗ can
then be expressed as a quadratic functions of G− Ḡ:

V (Q) = V (Q∗) + µ∗Ḡ
dQ

dG
(G− Ḡ) +

V ′′

2
(
dQ

dG
)2(G− Ḡ)2

C(e) = C(µ∗) + C ′(µ∗)
de

dG
(G− Ḡ) +

C ′′

2
(
de

dG
)2(G− Ḡ)2.

Define ∆ as the difference in expected welfare between the optimal tax and the optimal
standard. Given a non-optimal tax, the Taylor approximations, and the approximations on
dQ/dG and de/dG, we have:48

∆ ≥
∫ GH

GL

[(
V ′′

2
(
dQ

dG
)2 − µ∗2

2V ′′
)(G− Ḡ)2 − C ′′

2
(
de

dG
)2(G− Ḡ)2

− µ∗dQ
dG

(G− Ḡ)(G+ φg)−Q∗
de

dG
(G− Ḡ)(G+ φg)

− dQ

dG

de

dG
(G− Ḡ)2(G+ φg) +

µ∗2

V ′′
(G− Ḡ)(G+ φg)]f(G)dG, (76)

where all dQ/dG and de/dG terms pertain to these derivatives under the tax. Simplifying
further yields:

∆ ≥ 1

2
(V ′′(

dQ

dG
)2 − µ∗2

V ′′
)σ2 − C ′′

2
(
de

dG
)2σ2 + µ∗(

µ∗

V ′′
− dQ

dG
)σ2

−Q∗ de
dG

σ2 − dQ

dG

de

dG

∫ GH

GL

(G− Ḡ)2(G+ φg)f(G)dG. (77)

Next, note that:

V ′′

2
(
dQ

dG
)2 − µ∗2

2V ′′
+ µ∗(

µ∗

V ′′
− dQ

dG
) =

µ∗2

2V ′′
− µ∗dQ

dG
+
V ′′

2
(
dQ

dG
)2

=
1

2V ′′
(µ∗ − V ′′dQ

dG
)2 ≥ 0. (78)

48Equation (76) is derived by eliminating all terms involving multiplication of (G− Ḡ) by a constant.
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And further note that:

−C
′′

2
(
de

dG
)2 −Q∗ de

dG
+
Q∗

2

de

dG
=

de

dG

(
−C

′′

2

de

dG
− Q∗

2

)
≥ 0, (79)

where the inequality comes from the fact that de/dG ≥ −Q∗/C ′′ per equation (70).
Using equations (78) and (79), we may then write:

∆ ≥ −Q
∗

2

de

dG
σ2 − dQ

dG

de

dG

∫ GH

GL

(G− Ḡ)2(G+ φg)f(G)dG

≥ − de
dG

∫ GH

GL

(G− Ḡ)2
(
Q∗

2
+
dQ

dG
(G+ φg)

)
f(G)dG

≥ −1

2

de

dG

∫ GH

GL

(G− Ḡ)2Q∗
(

1 + 2
Q

Q∗
εG+φg

)
f(G)dG, (80)

where εG+φg is the gasoline price elasticity of miles driven, holding e constant, at a
gasoline price of G+φg. Equation (80) suggests that the optimal fuel economy tax will yield
greater expected welfare than the optimal fuel economy standard so long as the magnitude of
εG+φg is less than roughly 0.5. This value exceeds recent elasticity estimates with magnitudes
between 0.27 and 0.35 from Levin, Lewis, and Wolak (forthcoming), which are the highest
among recent studies. Note also that if εG+φg = 0 (i.e., V ′′ → −∞), then this expression
reduces to ∆ = Q2σ2/2C ′′, consistent with the main text.49

Why does the advantage of the tax over the standard diminish with the rebound effect?
The intuition flows from the fact that, under the tax, fuel economy responds more strongly
to gasoline price shocks than what is socially optimal.50 The magnitude of this over-response
increases with the responsiveness of miles driven to the cost of driving. Eventually, if the
magnitude of εG+φg is large enough, it is better to have a fixed fuel economy standard (which
yields insufficient responsiveness of e to G) than a fuel economy tax (too much responsiveness
of e to G).

D Banking and borrowing

This appendix presents a model involving two compliance periods, in which firms can bank or
borrow emissions credits across the two periods. The main result is that if fuel price shocks
are persistent across periods, there is no incentive to bank or borrow credits. Mean-reverting
fuel price expectations will, however, lead to some banking or borrowing.

Let µ denote the imposed standard, which must hold on average across the two periods.
Let G1 and G2 denote the first and second period gasoline prices, and let e1 and e2 denote
the first and second period choices of fuel consumption per mile. The policy requires that

49Recall that when miles driven are perfectly inelastic at Q, BeG and Bee from the model in the main text
are equivalent to −Q and −C ′′, respectively. Also, the formula for ∆ is an equality rather than an inequality
because all approximations used in deriving equation (80) become equalities when V ′′ → −∞.

50This effect is driven by the fact that consumers drive more miles than what is socially optimal, so that
their fuel economy choices are too sensitive to the gasoline price.
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µ = (e1+e2)/2. Permits may be freely banked or borrowed across periods, and for simplicity
I assume that the discount rate between periods is zero. The unconditional expected gasoline
price in both periods is Ḡ.

Let the standard µ be set optimally, and suppose for simplicity that the standard is
guaranteed to bind. It must then be that the Taylor approximation for the derivative of the
single-period private benefits function with respect to e is given by:

Be(e,G) = φ+Bee(e− µ) +BeG(G− Ḡ), (81)

so that Be(µ, Ḡ) = φ.
In the first period, agents choose e1 knowing the realization of G1 (where E[G1] = Ḡ).

This choice determines e2 via e2 = 2µ − e1. Let G̃ denote the expectation of G2 given
G1; i.e., G̃ = E[G2|G1]. I parameterize this expectation by G̃ = αG1 + (1 − α)Ḡ. Thus,
α = 1 represents an expectation that fuel price shocks are persistent, and α = 0 represents
an expectation that fuel price shocks are white noise around Ḡ. Intermediate values of α
denote a positively serially correlated AR(1) process for G, with a long-run mean of Ḡ.

Now consider the agents’ optimal choice of e1 given G1. The total private benefits func-
tion, noting that e2 = 2µ− e1, is given by:

B(e1, G1) + E[B(e2, G2)] = φ(e1 − µ) +
1

2
Bee(e1 − µ)2 +BeG(e1 − µ)(G1 − Ḡ)

+ φ(µ− e1) +
1

2
Bee(e1 − µ)2 +BeG(µ− e1)(G̃− Ḡ)

= Bee(e1 − µ)2 +BeG

(
(e1 − µ)(G1 − Ḡ) + (µ− e1)(G̃− Ḡ)

)
(82)

The FOC is then:

2Bee(e1 − µ) +BeG(G1 − G̃) = 0

↔ 2Bee(e1 − µ) = −BeG(G1 − αG1 − (1− α)Ḡ)

↔ e1 − µ =
−BeG

2Bee

(
G1 − αG1 − (1− α)Ḡ

)
. (83)

Thus, if fuel prices are persistent (consistent with section 2.2) so that α = 1, then agents’
optimal choice of e1 is µ regardless of the realization of G1. Thus, fuel economy matches the
standard in both periods, and there is no banking or borrowing. In contrast, if fuel prices
are mean reverting so that α < 1, then e1 will be greater (less) than µ if G1 is less (greater)
than Ḡ, signifying borrowing (banking).
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